• 締切済み

コーシー・リーマンの関係式の証明

f(z)=u(x,y)+iv(x,y) において、(z=x+yi) (df/dx)*(dx/dz)=(df/dy)*(dy/dz) より、 コーシー・リーマンの関係式 du/dx=dv/dy,dv/dx=-du/dy が成り立つ。 ↑のような証明法ではまずいでしょうか?

みんなの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.2

 はて、f(z)=u(x,y)+iv(x,y) というだけでコーシー・リーマンの関係式って成り立ちますか?たとえば、u(x,y)=x、v(x,y)=0でも成り立ちますか?  先刻ご承知でしょうけれども、コーシー・リーマンの関係式というのは偏微分方程式です。そして、これを満たすものを解析関数と呼ぶ。  確かに複素関数論では専ら解析関数ばかりを相手にします。ですが、どんなf(z)=u(x,y)+iv(x,y)でもコーシー・リーマンの関係式を満たすという訳じゃないです。  だから、u(x,y)+iv(x,y)がどういう性質を持つ関数であるかを決めて、それを前提にしない限り、証明しろったって問題として成立しません。  No.1ではi(∂f/∂x)=(∂f/∂y)を前提になさっていますね。

nwankwos
質問者

お礼

すいません、前提を書くのを忘れてました… 「f(z)が全微分可能なとき」 です。

  • rangeru
  • ベストアンサー率34% (15/44)
回答No.1

 (df/dx)*(dx/dz)=(df/dy)*(dy/dz)って成り立ちますか? fはzの関数ではなくuとvの関数なので上式は普通の微分ではなく、偏微分になり、式自体が成り立たないと思うのですが。  とりあえず簡単な証明  x方向(実軸)の変化とy方向(虚軸)の変化は直交し、複素平面では虚数iを用い、  i(∂f/∂x)=(∂f/∂y) と表現できます。ここで、f=u+ivを代入すると、  i(∂u/∂x)-(∂v/∂x)=(∂u/∂y)+i(∂v/∂y) となり、実部と虚部の関係でコーシー・リーマンの関係式が証明できた。  となります。詳しくはヴィジュアル複素解析などを参照してください。

nwankwos
質問者

お礼

ありがとうございます。やっぱり (df/dx)*(dx/dz)=(df/dy)*(dy/dz) はあやしいですね。 教科書を見ても、微分したやつをx軸方向、y軸方向の両方から近づけるってやつしかないようです。 教えてくださったやつは少し簡単そうですね。

関連するQ&A

  • 合成関数の微分

    z=f(x、y) u=x+y v=x-yのとき、Z[u]、Z[v]をf[x]、f[y]を用いて表せっていう問題です。 z[u]=(dz/dx)(dx/du)+(dz/dy)(dy/du) x=u+v/2 だからdx/du=1/2 y=u=v/2 だからdy/du=1/2 よってz[u]=dz/dx(1/2)+dz/dy(1/2)      =1/2f[x]+1/2f[y] あってますか??答えは一致したんですけど、dz/dxをf[x]、dz/dyをf[y]にしてもいいんでしょうか?? 間違ってたら教えてください!!!

  • ナビエストークスについてです。

    ナビエストークについてですが, P(x,y,z:t) q(x+dx,y+dy,z+dz:t+dt) のp-q間のX座標のみの速度変化を求めると (X,Y,Z):(u,v,w)より du=(du/dt)dt+(du/dx)dx+(du/dy)dy+(du/dz)dz となりますよね そこで(du/dt)を求めて, (dx/dt)=u, (dy/dt)=v, (dz/dt)=w になりますよね (du/dt)=(du/dt)+u(du/dx)+v(du/dy)+w(du/dz) となりますよね, 同様にしてy,z成分を求めると X: (du/dt)=(du/dt)+u(du/dx)+v(du/dy)+w(du/dz) Y: (dv/dt)=(dv/dt)+u(dv/dx)+v(dv/dy)+w(dv/dz) Z: (dw/dt)=(dw/dt)+u(dw/dx)+v(dw/dy)+w(dw/dz) ですよね これらをベクトル演算子を用いると対流項は なんで(Vgard)Vになるのですか? V(gradV)ならわからなくもないんですが.

  • 複素関数

    聞きたいことが2つあります。 1つ目は複素関数w=u+ivについてです。 この関数がコーシーリーマンの関係式を満たすとき、w'=a+ibもコーシーリーマンの関係式を満たすことを示したいのです。 まず、wにコーシーリーマンの関係式を適用してからラプラスの関係式を適用して d^2u/dx^2 + d^2u/dy^2 =0 d^2v/dx^2 + d^2v/dy^2 =0 となります。 このあと、a=du/dx + du/dy b=dv/dx + dv/dy と定義します。 でコーシーリーマンの関係式を使ったのですがどうにも一致しません^^; aとbの定義が違うのでしょうか? 2つ目は円柱周りの流れを表す複素速度ポテンシャルについてです。 f(z)=Az+B/z=φ+iψ f'(z)=u-iv と定義されていて、境界条件が設定されているのですが使い方がよくわかりません。 f(z)=φ+iψで、ラプラスが成り立つことは証明済みなのですが、これをうまく使うのでしょうか? どうぞ、よろしくお願いします。

  • コーシー・リーマン

    ω=f(z)=u(x,y)+iv(x,y)がD上正則であることの必要十分条件をコーシー・リーマンの関係式を用いて述べたいのですがどのような感じで述べれば良いのですか?回答式に答えていただきたいです。 また、ω=f(z)=u(x,y)+iv(x,y)がD上正則のとき、導関数が1/i{Uy(x,y);iVy(x,y)}で与えられることを示したいのですがどうすればよろしいですか? これも回答式に答えていただきたいです。 よろしくお願いします。

  • コーシーリーマンの式について

    コーシーリーマンの式を導く時に f'(z)=lim f(z+Δz)-f(z)/Δz    Δz→0 という式でf(z)=u+iv Δz=Δx+iΔyとおき Δy=0の場合 ∂u/∂x + i∂v/∂x Δx=0の場合 -i∂u/∂y+∂v/∂y これを比べて ∂u/∂y=-∂v/∂x というのが、なぜ右辺にマイナスが付くのでしょうか? 教えてください。 よろしくお願いいたします。

  • 全微分方程式の変数分離

    斉次全微分方程式 P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 をzが変数分離された式 P'(u,v)du+Q'(u,v)dv+dz/z=0 となることを示したいのですが、 まずx=uz,y=vzと置くと dx/dz=z*du/dz+u dy/dz=z*dv/dz+v となりますよね。 これを代入して色々やっているのですが、 どうやっても目的の式にもっていくことが出来ません…。 どなたかやりかただけでもお願いします。

  • 複素関数論

     以下の証明ができません。 解答方針だけでもいいので、どなたか教えてください。  u1=u(x1(t),y1(t)) v1=v(x1(t),y1(t)) u2=u(x2(t),y2(t)) v2=v(x2(t),y2(t)) とし、  cosθ={(dx1/dt*dx2/d2)+(dy1/dt*dy2/dt)}/√[{(dx1/dt)^2+(dy1/dt)^2}+{(dx2/dt)^2+(dy2/dt)^2}] cosθ'={(du1/dt*du2/d2)+(dv1/dt*dv2/dt)}/√[{(du1/dt)^2+(dv1/dt)^2}+{(du2/dt)^2+(dv2/dt)^2}] とすると、u(x,y)とv(x,y)がコーシーリーマンの関係式を満たす時   |cosθ|=|cosθ'| となることを示せ。

  • コーシーリーマンの問題について

    φ=x^2-y^2,ψ=2xyはコーシーリーマンの式を満たすことを示せ。 また、複素関数wがzの関数で表すことができない場合は、コーシーリーマンの式を満たさないことを示せ。 という問題なのですが、 >また、複素関数wがzの関数で表すことができない場合は、コーシーリーマンの式を満たさないことを示せ。 ここの解は、 例えば、x^2+iy^2のような関数はφ=x^2,ψ=y^2であり、 ∂φ/∂x=2x,∂ψ/∂y=2yとなり、コーシーリーマンの関係式が満たされるのはz平面内で直線y=x上だけである。 よって関数x^2+iy^2は満たさない。 このような解でいいんでしょうか? よろしくお願いします。

  • 微分 やり方を見せてほしいです

    y=-3ln(1-x)^2 を微分せよという問題です。 私のやり方 (1-x)を u とする y=-3lnu^2 u^2 をzとする y=-3lnz dy/dx = (dy/dz)(dz/du)(du/dx) =(-3/z)(2u)(-1) =6/u =6/(1-x) となります。 答えはこれで合っているのですが無駄なやり方をしてる様に思います。 普通はどんなやり方をしているのでしょうか?

  • f(z) = z - 1/z に対してコーシー・リーマンの関係式を使っ

    f(z) = z - 1/z に対してコーシー・リーマンの関係式を使って正則性を判定せよ。 解答 f(z)はz≠0において定義され、 f(z)= u + iv u = x - x/(x^2 + y^2) v = y + y/(x^2 + y^2) であり、 u_x = v_y u_y = -v_x よってz≠0で正則 …と書いてあって、 u_x = v_y、u_y = -v_xの偏微分は計算できるんですが、 その前の u = x - x/(x^2 + y^2) v = y + y/(x^2 + y^2) をどうやって導き出したのか教えてください (式さえ教えてくだされば自分で計算します)。 この本には例が一つも載っていません…。お願いします。