• 締切済み
  • 困ってます

数学の問題です。

カテゴリ(中学受験)に投稿してしまいましたので、再投稿です。 申し訳ありません。 AB=6,AD=4,BC=8の台形ABCD(AD∥BC)がある。 ここにPQ∥BCとなるように,2点P,Qを辺AB, CD上にとる。 (1)点Pが線分ABの中点のとき,線分PQの長さを求めなさい。 (2)AP=x,PQ=yとするとき,yをxで表しなさい。 (3)線分PQが台形ABCDの面積を二等分するとき,線分APの長さを求めなさい。 のうち、(3)がわかりません。解説もお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数151
  • ありがとう数2

みんなの回答

  • 回答No.3

誤記訂正。 (非負解は x = 3.4868... だけ)   

共感・感謝の気持ちを伝えよう!

  • 回答No.2

>… のうち、(3)がわかりません。 (2) は解けてる気配らしいので、    ↓  y=(2/3)x+4 これを利用する。 もとの台形 (AP=6) の面積 S6 が分割台形 (AP=x) の面積 2 倍 … という条件は?  2 = S6/Sx = { (4+8)*6/2 } / { (4+y)*x/2 } = 36 / { (x/3)+4 }*x これを整形して、  36 = 2*{ (x/3)+4 }*x  (2/3)x^2 + 8x - 36 = 0 なる 2 次方程式。 (非負解は x = 12 だけ)   

共感・感謝の気持ちを伝えよう!

  • 回答No.1

(2) y=(2/3)x+4 ですか? (3) Aから辺BCに垂線AHを引き、PQとの交点をIとすると、 △API ∽ △ABH だから、 AI:AH=AP:AB=x:6 線分PQが台形ABCDの面積を二等分するとき、 台形APQD:台形ABCD=1:2 (1/2)×(AD+PQ)×AI:(1/2)×(AD+BC)×AH=1:2 (4+y)×x:(4+8)×6=1:2 2x(4+y)=72 x{4+(2/3)x+4}=36 (2/3)x^2+8x-36=0 x^2+12x-54=0 x=[-12±√{(12^2-4・1・(-54)}]/(2・1) =(-12±√360)/2 =(-12±6√10)/2 =-6±3√10 x>0 より x=(3√10)-6 したがって AP=(3√10)-6

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学の問題です。

    AB=6,AD=4,BC=8の台形ABCD(AD∥BC)がある。 ここにPQ∥BCとなるように,2点P,Qを辺AB, CD上にとる。 (1)点Pが線分ABの中点のとき,線分PQの長さを求めなさい。 (2)AP=x,PQ=yとするとき,yをxで表しなさい。 (3)線分PQが台形ABCDの面積を二等分するとき,線分APの長さを求めなさい。 のうち、(3)がわかりません。解説もお願いします。

  • 数学の問題です。

    数学の問題です。 画像を参考にしてください。 AB=acm、AD=bcmの長方形ABCDがあり、点Eは辺CDの中点である。また、点Fは辺BC上にあり、BF:FC=3:2となる点である。このとき、△AFEの面積をa,bを 用いた最も簡単な式で表しなさい。 という問題です。 分かる方、教えてください。よろしくお願いします。

  • 中学数学図形の問題です

    教えて下さい 図の四角形ABCDは AB//CD、∠ABC=90°の台形である。線分BCの中点をMとし、点Mと点Aを結び、線分AMを点Mの方向に延ばした直線と、辺CDを点Cの方向に延ばした直線との交点をEとする。点Dと点Mを結ぶ。∠AMD=90°のとき次の問いに答えよ (1)∠MAB=68°のとき、∠ADEの大きさを求めよ (2)AB=2cm、CD=8cmのとき 辺ADの長さを求めよ、△DAEの面積を求めよ よろしくお願いします

  • 図形について

    <四角形ABCDはAD=4cm、BC=6cm、AD//BCの台形である。図のように辺B C上に1点Pをとり、線分DPが台形ABCDの面積を2等分するとき、BPの長さを求めなさい。> 答えは1です。 なかなかわからなかったので、質問をさせていただきました。解説をお願いします(>人<;)

  • 中3の数学の問題が分かりません

    下の写真のように AD//BCで、AD=4cm、BC=8cmの台形があり、 その中の三角形APDと三角形BPCの面積の比3:2とする時 1)Pから直線AD、BCに垂線をひき!交点をQ、Rとする この時、PQとPRの比を求めよ。 2)三角形APB+三角形CPDと台形ABCDの面積の比を求めよ。 と言う問題です。 どうしてもわからないので、説明付きのご回答よろしくお願いします

  • 本当に初歩的な質問です

    右の図のように、AD〃BC,AD=3cm、BC=6cm、∠BCD=90度の台形ABCDがある。辺 AD,CDの中点をそれぞれM、Nとし、辺AD,CDの中点をそれぞれM、Nとし、辺BCの三等分点 をK、Lとする。 (1)AB=4cmのとき、CDの長さを求めよ。 (2)ALとMKの交点をPとするとき、AP:ALを求めよ。 (3)ALとNKの交点Qとするとき、△ABLの面積は△QKLの面積の何倍になるか。 テキストの(3)の解説で(1)のAB=4センチメートルを当然のように前提にしているのですが、(1)はAB=4cmのときという限定された問題です。(3)の問題までAB=4cmが前提になるのはおかしいような気がするのですが?

  • ベクトルについて

    今日また質問ですが、もしよろしければお付き合いください。 I.立方体ABCD-EFGHにおいて、辺EHの中点をMとする。このとき、線分BM上にある点Pにおいて、線分BMと線分APが直交する。AB↑=b↑、AD↑=d↑、AE↑=e↑、AP↑をb↑、d↑、e↑で表せ。 II.四面体ABCDにおいて、次の問に答えよ。 a)AB↑・CD↑+BC↑・AD↑+CA↑・BD↑の値を求めよ。 b)AB↑直角CD↑、BC↑直角AD↑のとき、CA↑直角BD↑であることを証明せよ。 IはAP↑=AB↑+t・BM↑となって、さらにAP↑・BM↑=0を代入したら全部なくなってしまいました。IIのaは0でしょうか?bは式での説明の仕方が分かりません。 よろしくお願いします。

  • 図形です

    台形ABCDは、AB//CD、AB=5、CD=3 面積が24 (1)台形ABCDが等脚台形BC=ADとなるときのADの長さ (2)BC=6√2となるときADの長さをすべてもとめよ できればわかりやすい説明もお願いします。

  • 数学の問題です。

    数学の問題です。 画像を参考にしてください。 図のような台形ABCDがある。点Pは、頂点Bを出発して返BC上を頂点Cまで、毎秒2cmの早さで動く。x秒後の△ABPの面積をy平方cmとするとき、△ABPの面積が台形ABCDの面積のちょうど半分になるのは、点Pが頂点Bを出発してから何秒後ですか。 という問題です。 分かる方、答えの導き方が分かりません。教えてください。

  • ベクトルの問題

    AD//BC、BC=2ADである四角形ABCDがある。点P,Qが ↑PA+2↑PB+3↑PC=↑QA+↑QC+↑QD=↑0 を満たすとき、 (1)ABとPQが平行であることを示せ。 (2)3点P,Q,Dが一直線上にあることを示せ。 (1) AD//BC,BC=2ADから ↑BC=2↑AD=2↑AD ↑AC-↑AB=2↑AD ↑AC=↑AB+2↑AD・・・(1) さらに↑PA+2↑PB+3↑PC=↑0から、 (↑AA-↑AP)+2(↑AB-↑AP)+3(↑AC-↑AP)=↑0 6↑AP=2↑AB+3↑AC (1)を代入すると 6↑AP=2↑AB+3(↑AB+2↑AD) =5↑AB+6↑AD ↑AP=(5/6)↑AB+↑AD・・・(2) また、↑QA+↑QC+↑QD=↑0から (↑AA-↑AQ)+(↑AC-↑AQ)+(↑AD-↑AQ)=↑0 3↑AQ=↑AC+↑AD (1)を代入すると、 3↑AQ=(↑AB+2↑AD)+↑AD    =↑AB+3↑AD ↑AQ=(1/3)↑AB+↑AD・・・(3) ここで、↑PQ=↑AQ-↑AP を 計算すると(2)、(3)より、 ↑PQ={(1/3)↑AB+↑AD}-{(5/6)↑AB+↑AD} =(-1/2)↑AB・・・(4) ∴ ↑PQ=(-1/2)↑AB よって、ABとPQが平行である。 (2)3点P,Q,Dが一直線上にあることを示せ。 ↑PD=↑AD-↑AP (2)を代入して、 ↑PD=↑AD-{(5/6)↑AB+↑AD}   =(-5/6) ↑AB   =(5/3)↑PQ よって、3点P,Q,Dは一直線上にある こうやると教えてもらったんですけど、合っていますか? こういうタイプの問題はとりあえず基準点を定めて位置ベクトルに直せばいいんですか? それとも他にいいやり方があるんですかね?(x_x;)