• ベストアンサー
  • 困ってます

数学的帰納法の問題

帰納法の問題を教えてください。 すべての自然数nについて、n^3+5nは6の倍数であることを数学的帰納法 によって証明せよ。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

1)n=1のとき n^3+5n=6 これは6の倍数である。 2)n>1である、あるnについて n^3+5nは6の倍数であることを仮定。すなわち n^3+5n=6m (mは整数)  (1) 3)n+1のとき P=(n+1)^3+5(n+1) が6の倍数であることを言えばよい。 P=(n+1)^3+5(n+1)=n^3+5n+6+3n^2+3n (1)を用いて P=6m+6+3n(n+1) nが偶数のとき3n(n+1)は6の倍数 nが奇数のとき(n+1)が偶数になるので3n(n+1)は6の倍数 以上よりPは6の倍数になる。 1)~3)から数学的帰納法によって、すべての自然数nについて、n^3+5nは 6の倍数であることが証明された。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学的帰納法ではない解き方

    すべての自然数nについて、n^3+2nは3の倍数である。 この問題を数学的帰納法を 使わないで 解く方法を問題としてだされました 自分では何回しても解けませんでした 解答お願いします!!

  • 数学的帰納法ではない解き方

    すべての自然数nについて、n^3+2nは3の倍数である。 この問題を数学的帰納法を 使わないで 解く方法を問題としてだされました 自分では何回しても解けませんでした 途中式など馬鹿な自分にも わかりやすくしていただくと助かります お願いします!!

  • 数学的帰納法

    整数nに対して、(n^3)+5nは6の倍数を証明する問題で 数学帰納法を用いると (1) n=1のとき (n^3)+5n=6 6の倍数 (2) kが自然数のとき(k^3)+5k=6A Aは整数とする このときどうしてkのk+1を代入するのですか? 計算をすると (k^3)+5k =(k^3)+5k+3(k^2)+3k+6 =6A+3k(k+1)+6 になりましたが これをどのような意味をもつのか分かりません。 どのように証明するのでしょうか? (3) (n^3)+5nは6の倍数とすると (-n)^3+5(-n)のときやn=0のときもどうして6の倍数になるのか分かりません。

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • 数学の問題についてです。

    数Bの問題について教えてください。 すべての自然数nについて、nの3乗+(n+1)の3乗+(n+2)の3乗は9の倍数である。このことを数学的帰納法を使わずに証明せよ。 という問題です。自分では何回かやっているのですが答えが全くあいません。 どうぞよろしくます。

  • 数学的帰納法

    nは自然数とする。5^(n+1) + 6^(2n-1) は31で割り切れることを証明せよ。という問題です。 数学的帰納法でとくと・・・ (1)n=1のとき 5^(n+1) + 6^(2n-1) =5^(1+1) + 6^(2-1) =5^2 + 6 =25+6 =31 となり、成り立っている。 (2)n=kのときも成り立っていると仮定すると 5^(k+1) + 6^(2k-1)となり、これは31の倍数である。 よって5^(k+1) + 6^(2k-1)=31Mとあらわすことができる(M:整数) n=k+1のとき 5^(k+1+1) + 6^(2(k+1)-1) =5^(k+2) + 6^(2k+1) ここまではわかりました。 この問題はn=k+1のときも31の倍数であることを証明すればいいのですよね? しかし5^(k+2) + 6^(2k+1)から 31{・・・・}となるように持っていくことができませんでした。 (私の考えが違っていたらすいません。) 解答を見たら(n=k+1のときの前までは解答と同じでした。) n=k+1のとき 5^(k+1+1) + 6^(2(k+1)-1) =5(5^(k+1) + 6^(2k+1)+31・6^2k-1 となっています。 これは31の倍数であるから、n=k+1のときも成り立つ。 (1)(2)より、すべての自然数について命題が成り立つ。 となっていました。 どうやって、5(5^(k+1) + 6^(2k+1)+31・6^2k-1に持っていたのですか? できる限り詳しく教えてください。お願いします。

  • 数学的帰納法

    n≧2(nは自然数)のとき、nの7乗-nが7の倍数でえることを帰納法によって証明してください(>_<)

  • 数学の帰納法の問題です

    数学の帰納法の問題です 自然数nに対して下の不等式を証明するという問題なのですが出だしからわかりません・・・ アプローチの仕方など教えてください! (1+2+3+…+n)(1+1/2+1/3+…1/n)≧n^2

  • 数学的帰納法

    こんにちは。よろしくお願いいたします。 nを自然数とするとき数学的帰納法を使って証明する問題です 。 1+3+5+・・+(2n-1)=n^2 まず、n=1を代入しますが、 なぜ(2n-1)とn^2の部分しかつかわないのでしょうか。 n^2というのは1+3+5・・+(2n-1)を足したものなのに・・ 教えてください よろしくお願いいたします。

  • 数学的帰納法

    問 すべての自然数nについて、次の等式が成り立つことを数学的帰納法によって証明せよ。 1・2+2・3+3・4+……+n(n+1)=1/3n(n+1)(n+2) 〔1〕n=1のとき までは解るんですが 〔2〕n=kのとき 以降の解法が解りません。 教えていただけたら有難いです。