• ベストアンサー
  • 困ってます

数学の帰納法の問題です

数学の帰納法の問題です 自然数nに対して下の不等式を証明するという問題なのですが出だしからわかりません・・・ アプローチの仕方など教えてください! (1+2+3+…+n)(1+1/2+1/3+…1/n)≧n^2

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • nag0720
  • ベストアンサー率58% (1093/1860)

帰納法については分かってますよね。 (1+2+3+…+n+(n+1))(1+1/2+1/3+…+1/n+1/(n+1)) =(1+2+3+…+n)(1+1/2+1/3+…+1/n)+(1+2+3+…+n)*1/(n+1)+(n+1)(1+1/2+1/3+…+1/n)+(n+1)*1/(n+1) ≧n^2+n/2+(n+1)(1+1/2+1/3+…+1/n)+1 =(n+1)^2+(n+1)(1+1/2+1/3+…+1/n)-3n/2 つまり (n+1)(1+1/2+1/3+…+1/n)≧3n/2 が成立すれば、最初の不等式が成り立ちます。 これを再度帰納法で証明しましょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました! 理解に少し時間がかかり、お礼が遅れてしまいすみません やっとできましたー!本当にありがとうございます

関連するQ&A

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • 数学的帰納法おしえてください

    帰納法の問題がわかりません。 (1)自然数nについて、等式1+2x+3x^2+..........+nx^n-1=1-(n+1)x^n+nx^n+1/(1-x)^2 が成り立つことを、数学的帰納法を用いて証明せよ。ただしxは1でないとする。 よろしくお願いします。

  • 数学的帰納法の証明2

    [問題] nは4以上の自然数とする。数学的帰納法によって、次の不等式を証明せよ。               2ⁿ>n²-n+2 この問題の証明の仕方がわかりません。 解法を回答してくださる方 お待ちしております。 ⁿはn乗 &#sup;は2乗のこと

  • 【数学B】数学的帰納法 発展問題

    まず、問題を書きます。 /////////////////////////////////////////// 問 nは自然数とする。数学的帰納法によって、次の不等式を証明せよ。 1) 1^2+2^2+3^2+・・・・・・+n^2<(n+1)^3/3 /////////////////////////////////////////// 見にくいですが。 解答を見てみたのですが、何か僕にとって大事なところが抜けていて、何言ってるかわかりませんでした。 帰納法で i)n=1のとき ii)n=kのとき で考えるところまでは分かりますが、n=kでnにkを代入した式を仮定するまでしか駄目でした。 この数学的帰納法の証明方法はいくつかあると思いますが、 一番、簡潔で分かりやすく証明できる方法を教えてください。 お願いします。

  • 数学的帰納法の問題

    帰納法の問題を教えてください。 すべての自然数nについて、n^3+5nは6の倍数であることを数学的帰納法 によって証明せよ。 よろしくお願いします。

  • 数学的帰納法

    問 すべての自然数nについて、次の等式が成り立つことを数学的帰納法によって証明せよ。 1・2+2・3+3・4+……+n(n+1)=1/3n(n+1)(n+2) 〔1〕n=1のとき までは解るんですが 〔2〕n=kのとき 以降の解法が解りません。 教えていただけたら有難いです。

  • 数学B 数学的帰納法

    nは自然数とする。数学的帰納法によって、次の等式を証明せよ。 1+10+10^2+・・・+10^n=(1/9){(10^n+1)-1} という問題で、 n=1の時 左辺=1+10=11 となるのはなぜでしょうか? n=1の時は1だと思うんですが…

  • 数学的帰納法の問題 数B

    nは自然数とする。次の等式が成り立つことを証明せよ。 (1) x^n+2 + y^n+2 = (x^n+1 + y^n+1)(x+y)-xy(x^n+y^n) (2) (1)の等式を利用して、nが自然数であるとき、(1+√2)^n+(1-√2)^nは自然数であることを、数学的帰納法によって証明せよ。 この問題についての解答・ヒントなどよろしくお願いします!

  • 数学的帰納法の問題

    nが2以上の自然数のとき、不等式1+1/2+1/3+…+1/n>2n/n+1が 成り立つことを数学的帰納法で証明せよ という問題なのですが、 n=k+1のとき、1+1/2+…+1/k+1/k+1>2k/k+1+1/k+1                           =2k+1/k+1 までは分かるのですがその次の ここで 2k+1/k+1-2(k+1)/k+2 からが分かりません。 何でこの式になるのかを教えてほしいです(-_-;) よろしくお願いしますm(__)m

  • 数学的帰納法の問題

    数学的帰納法を用いて以下の不等式を証明する問題で、n=k+1のときの証明でk(2k+1)/2+√(2k+1)(2k+2)と(k+1){2(k+1)+1}/2の大小を比較するのはなぜですか? √1・2+√3・4+・・・+√(2n−1)・2n<n(2n+1)/2