• 締切済み

てめーらに聞きたいことが。

X[n] = 10^n -1で定義します。 いま、X[n] が ( X[5] )^2で割り切れるときのnの条件を考えます。 いまX[n]が X[5]で割り切れるとき、n は5の倍数です(これは証明できていて使っていいものとします) X[n] が ( X[5] )^2で割り切れる ⇒ X[n] は X[5] で割り切れて、n = 5k (k:整数)とおく X[5k] = {10^5}^(k) - 1 X[5] = 10^5 -1 = mとおくと、X[5k] = (m +1)^(k) - 1 さて、いま(m +1)^(k) - 1を考える。 これをm^2で割り商をf(m), 余りをam +bとします。 (m +1)^(k) - 1 = m^2・f(m) + am+bとなる。 m =0を代入して、 0 = b 次に両辺をmで微分してm=0を代入 k(0 + 1)^(k-1) = {2・0・f(0) + 0^2・f'(0)} + a⇔a = k (m +1)^k - 1 = m^2・f(m) + kmとなり、m = 10^5 -1を代入すると {10^5}^k -1 = {10^5 -1}^2 f(10^5-1) + (10^5 -1)k となる。ここで(X[5])^2 = (10^5 -1)^2で上記が割り切れるためには、kが(10^5 -1)で割り切れればいいので、k =(10^5 -1)t (t:整数)である。 n = 5kなので、答えはn = 5(10^5 -1)t (t:整数) これで正解か?てめーら!

みんなの回答

  • B-juggler
  • ベストアンサー率30% (488/1596)
回答No.1

2ch ではないから、言葉遣いくらい考えよう。 微分していい理由はどこにありますか? 連続している関数だろうか、ちょっと気になる。 kを整数としているから、不連続関数になっていないかな? kにかんして、帰納法で求めていくような気がする。 多分答えはあってると思うけど。 (=^. .^=) m(_ _)m (=^. .^=)

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 論理的な誤りがある?

    X[n] = 10^n -1で定義します。 いま、X[n] が ( X[5] )^2で割り切れるときのnの条件を考えます。 いまX[n]が X[5]で割り切れるとき、n は5の倍数です(これは証明できていて使っていいものとします) X[n] が ( X[5] )^2で割り切れる ⇒ X[n] は X[5] で割り切れて、n = 5k (k:整数)とおく X[5k] = {10^5}^(k) - 1 X[5] = 10^5 -1 = mとおくと、X[5k] = (m +1)^(k) - 1 さて、いま(m +1)^(k) - 1を考える。 これをm^2で割り商をf(m), 余りをam +bとします。 (m +1)^(k) - 1 = m^2・f(m) + am+bとなる。 m =0を代入して、 0 = b 次に両辺をmで微分してm=0を代入 k(0 + 1)^(k-1) = {2・0・f(0) + 0^2・f'(0)} + a⇔a = k (m +1)^k - 1 = m^2・f(m) + kmとなり、m = 10^5 -1を代入すると {10^5}^k -1 = {10^5 -1}^2 f(10^5-1) + (10^5 -1)k となる。ここで(X[5])^2 = (10^5 -1)^2で上記が割り切れるためには、kが(10^5 -1)で割り切れればいいので、k =(10^5 -1)t (t:整数)である。 n = 5kなので、答えはn = 5(10^5 -1)t (t:整数) で合っていますか?

  • 連続したn個の整数の積

    ひき続いたn個の整数の積のなかには、nの倍数が含まれることがわからないので質問します。問題は、 整数a,bを係数とする2次式f(x)=x^2+ax+bを考える。f(α)=0となるような有理数αが存在するとき、以下のことを証明せよ。 (1)αは整数である。(2)任意の整数lと任意の自然数nに対して、n個の整数f(l),f(l+1),・・・,f(l+n-1)のうち少なくとも1つはnで割り切れる。 (1)α=m/n(m,nは互いに素な整数)とおくと条件より (m/n)^2+a(m/n)+b=0, m^2/n=-(am+bn) m^2はnで割り切れるが,m,nは互いに素だから n=±1しかない。ゆえにα=±mとなり、αは整数である。 (2)f(α)=0だから、f(x)=x^2+ax+b=0となる2次方程式は、x=αなる解をもつ。ほかの解をβとすれば、解と係数の関係からα+β=-a,β=-a-αよりβも整数である。ゆえにf(x)はこの2整数α,βを用いて、f(x)=(x-α)(x-β)と因数分解できる。したがってf(l)=(l-α)(l-β)となりf(l)はl-αで割り切れる。同様に、 f(l+1)はl+1-α で f(l+2)はl+2-α   ・・・ f(l+n-1)はl+n-1-α で割り切れる。 ゆえにf(l)f(l+1)f(l+2)・・・f(l+n-1)はそれらの積 (l-α)(l+1-α)(l+2-α)・・・(l+n-1-α)= (l-α)(l-α+1)(l-α+2)・・・(l-α+n-1)で割り切れる。 ここがわからないところです。 l-αからはじまる引き続いたn個の整数の積だから、どこかにnの倍数がある。 自分はl-α=-3 n=4で計算をしたら、 -3,-2,-1,0 となり0が4で割り切れるのかと疑問に思ったり、 他の数を代入して計算してみても、ひき続いたn個の整数の積のなかには、nの倍数が含まれることが実感できませんでした。 解答の続きは、よってn個の整数f(l),f(l+1),・・・,f(l+n-1)のうち少なくとも1つはnで割り切れる。でした。 どなたか、ひき続いたn個の整数の積のなかには、nの倍数が含まれることを証明してください。お願いします。

  • 整数の倍数性

    n=a1・a2・a3・…・am(a1~am:素数または1) とすると、 kを自然数として、x^kがnの倍数ならば整数xもnの倍数 は言えますか? すみません数学は得意ではないので…

  • 証明

    何度も失礼します。 問題は、a,b,cはどの2つも1以外の共通な約数を持たない正の整数とする。a,b,cが、a^2+b^2=c^2を満たしているとき、次の問いに答えよ。 (cは奇数である) (1)a,bの1つは4の倍数であることを示せ。 証明は、cは奇数であるから、,bのうちいずれか一方は偶数で、他方は奇数である。いま、偶数の方をaとしてもよい。aが4の倍数でないと仮定すると、a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)とおける。 a^2+b^2=(4k+2)^2+(4m±1)^2 =8(2k^2+2k+2m^2±m)+5 c^2=(4n±1)^2=8(2n^2±n)+1 よってあまりが違い、矛盾するので正しい。 となっているのですが、{a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)}ですが一つ目の疑問は(k,m,nは整数)ですが、整数では、例えばmが-3とかのとき明らかに-になるのでだめですよね?bが正の整数を大前提にということでしょうか?もうひとつは、これはb,cは奇数であることをいいたいのだからa=4k+2、b=2m-1,c=2n-1(・・・m,nは自然数)としてはいけないのでしょうか?それでもできるとおもうのですが。b=4m±1,c=4n±1である理由があるのでしょうか?

  • 二次方程式の問題

    次の問題の解答をお願いします。 α=2-m√3、β=2+m√3までは求められたのですが・・・。 [1]mは負でない整数とする。xについての2次方程式 x^2-4x-3m^2+4=0の2つの解を α、βとおく。α≦βであるとき、 α=ア-m√イ、β=ウ-m√エ であるから、 2次方程式 x^2-4x-3m^2+4=0が整数を解にもつとき、その整数の2つの解を α´、β´とおく。α´、β´が、α´^2+β´^2=32・・・・・・(1) をみたすとき、mとkとの間には カm^2-k=キ が成り立つ。 したがって、(1)をみたすmとkの値の組(m,k)は (m,k)=(ク,ケコ),(サ,シス) である。ただし、ク<サとする。 [2]Uを2桁の自然数全体の集合とし、その部分集合をA、Bを次のように定める。 A={x|xは3の倍数} B={x|xは7の倍数} 集合Xの要素の個数をn(X)で表すとき n(A∨B)=セソ n(¬A∧B)=タ n(A∨¬B)=チツ である。 また、集合(¬A¬∨¬B)∨(A∧B)をCとおく。 この集合Cと同じものを表す集合は、テとトであり、n(C)=ナニである。 テ、トについては、当てはまるものを 0~3 から一つずつ選べ。 0・・・(¬¬A¬∨¬¬B)∨(¬A∧¬B) 1・・・(¬A∧B)∧(A∨¬B) 2・・・(A∨¬B)∨(¬A∧B) 3・・・(¬A∨B)∧(A∨¬B) 0~3については、表記がわかりにくいため、画像を添付しました。

  • 整数問題の必要十分条件の求め方

    kを負でない整数とし、 x^2-y^2=k …(*) の解(a,b)でa,bがともに奇数であるものを奇数解と呼ぶ。 (*)が奇数解を持つための必要十分条件を求めよ。 この問題では(*)が奇数解をもてば kは8の倍数であることが知られています。 そこでタイトルの通り求め方なのですが、 k=8n (n:負でない整数) とおくと、nを用いた 2n-1, 2n+1は奇数である。 x=2n+1, y=2n-1をx^2-y^2に代入すると (2n+1)^2-(2n-1)^2=4n*2=8n=k したがって、(x,y)=(2n+1,2n-1)は(*)の解である。 よって(*)が奇数解をもつための必要十分条件は 「kが8の倍数であること」 Q.「奇数解をもつ」ならば「kは8の倍数」 という必要条件だけをもう一度証明したみたいで、 これで必要十分条件たりえるのでしょうか?

  • 数学的帰納法

    整数nに対して、(n^3)+5nは6の倍数を証明する問題で 数学帰納法を用いると (1) n=1のとき (n^3)+5n=6 6の倍数 (2) kが自然数のとき(k^3)+5k=6A Aは整数とする このときどうしてkのk+1を代入するのですか? 計算をすると (k^3)+5k =(k^3)+5k+3(k^2)+3k+6 =6A+3k(k+1)+6 になりましたが これをどのような意味をもつのか分かりません。 どのように証明するのでしょうか? (3) (n^3)+5nは6の倍数とすると (-n)^3+5(-n)のときやn=0のときもどうして6の倍数になるのか分かりません。

  • 四の二十一 高校数学の数列です

    関数f(x)を次のように定義する f(x)={1(x=0のとき),0(x≠0のとき)} このときf(x)を使って数列a[0],a[1],a[2],....をa[0]=0, a[n]=a[n-1]+f{(a[n-1]+1)^2-n}(n>=1)で定義する このとき、a[n]=[√n](n>=0)であることを証明せよ ただし、[x]はxをこえない最大の整数を表す 回答 a[0]=0であるからa[n]=[√n](1)はn=0のときに成り立つ n=kのときに(1)が成り立つと仮定し[√k]=mとおくと a[k+1]=a[k]+f{(a[k]+1)^2-(k+1)} =m+f{(m+1)^2-1-k} よってk=(m+1)^2-1のときはa[k+1]=m+1,[√k+1]=m+1よって a[k+1]=[√k+1] またm^2<=k<(m+1)^2-1のときはa[k+1]=m, [√k+1]=m よって[√(k+1)] したがってn=k+1のときも(1)が成り立つ よって数学的帰納法により0以上の全ての整数について位置が成り立つ とあるのですが[√k+1]=m+1とか[√k+1]=mは何のために求めるのですか?

  • 中学校で習う文章問題について質問が3問あります。

    問1 2つの異なる正の整数A、Bがある。Aを3で割ると、商がmで余りが2でBを3で割ると、商がnで余りが2である。 このときA+Bを3で割った時の商と余りを求めなさい。 「Aを3で割ると、商がmで余りが2は」 A÷3=mあまり2 A=にすると A=3m+2 「Bを3で割ると、商がnで余りが2は」 B÷3=nあまり2 B=にすると B=3n+2 A+B=(3m+2)+(3n+2)÷3 =(3m+3n+4)÷3 =(m+n+1)余り1 ここで質問なのですが、 最後に「割る3」をするのですが、その際答えを 3でくくって=3(m+n+1)余り1にするの は間違えでしょうか? (多分間違えだと思うのですが・・・) 問2 5で割ると3余る整数をa、5で割ると4余る整数をbとする時、積abを5で割ったときの余りを求めなさい。 この問題は商が分からないのでX、Yとおきました。 a÷5=X…3 a=5X+3 b÷5=Y…4 b=5Y+4 積ab=(5X+3)(5Y+4) =(25XY+20X+15Y+12)÷5 =(5XY+4X+3Y+2)余り2 今回は余りを求めよという問題なので答え2 で良いと思うのですが合っていますでしょうか? 問3 長くなりすみません。 よく中学数学で()を外すときは符号に注意とか、-がつくと気をつけるようにと耳にたこが出来るように聞かされてきたのですが、反対に()をつけた場合はどうなるのでしょうか? 例えば、 4-a^2-2ab-b^2を因数分解すると 4-(a^2+2ab+b^2) のように括弧内の符号が反対(この場合は+へ)になるのでしょうか? 夜遅い時間で恐縮ですが、回答お願いいたします。     

  • 数学問題

    1.nをx以下の最大の整数、mをx以上の最小の整数とした場合、f(x)=min{x-n,m-x}。 xをf(x)=f(2x)を満たす正の実数とした時にf(3x)の値は何ですか? 2.2.A=a1+a2、B=b1+b2、a1,a2,b1,b2≧0 |a1-b1|+|a2-b2|=|A-B|を満たすのはどれですか。 (A)(a1-a2)(b1-b2)>0 (B)(a1-a2)(b1-b2)<0 (C)(a1-a2)(b1-b2)=0 (D)(a1-b1)(a2-b2)>0 (E)(a1-a1)(a2-b2)<0 3.p+q=1,p>0,q>0 f(x)=(qp)^2,k=0,1,2,… 次のうちどれを満たしますか? (A) f(k)=(f(k+1)+f(k-1))/2,k≧1 (B) f(k)=2/(1/f(k+1)+1/f(k-1)),k≧1 (C) f(k)^2=f(k+1)f(k-1),k≧1 (D) f(k)^2<f(k+1)f(k-1),k≧1 (E) f(k)^2>f(k+1)f(k-1),k≧1 よろしくお願いします。