• ベストアンサー
  • 困ってます

連続したn個の整数の積

ひき続いたn個の整数の積のなかには、nの倍数が含まれることがわからないので質問します。問題は、 整数a,bを係数とする2次式f(x)=x^2+ax+bを考える。f(α)=0となるような有理数αが存在するとき、以下のことを証明せよ。 (1)αは整数である。(2)任意の整数lと任意の自然数nに対して、n個の整数f(l),f(l+1),・・・,f(l+n-1)のうち少なくとも1つはnで割り切れる。 (1)α=m/n(m,nは互いに素な整数)とおくと条件より (m/n)^2+a(m/n)+b=0, m^2/n=-(am+bn) m^2はnで割り切れるが,m,nは互いに素だから n=±1しかない。ゆえにα=±mとなり、αは整数である。 (2)f(α)=0だから、f(x)=x^2+ax+b=0となる2次方程式は、x=αなる解をもつ。ほかの解をβとすれば、解と係数の関係からα+β=-a,β=-a-αよりβも整数である。ゆえにf(x)はこの2整数α,βを用いて、f(x)=(x-α)(x-β)と因数分解できる。したがってf(l)=(l-α)(l-β)となりf(l)はl-αで割り切れる。同様に、 f(l+1)はl+1-α で f(l+2)はl+2-α   ・・・ f(l+n-1)はl+n-1-α で割り切れる。 ゆえにf(l)f(l+1)f(l+2)・・・f(l+n-1)はそれらの積 (l-α)(l+1-α)(l+2-α)・・・(l+n-1-α)= (l-α)(l-α+1)(l-α+2)・・・(l-α+n-1)で割り切れる。 ここがわからないところです。 l-αからはじまる引き続いたn個の整数の積だから、どこかにnの倍数がある。 自分はl-α=-3 n=4で計算をしたら、 -3,-2,-1,0 となり0が4で割り切れるのかと疑問に思ったり、 他の数を代入して計算してみても、ひき続いたn個の整数の積のなかには、nの倍数が含まれることが実感できませんでした。 解答の続きは、よってn個の整数f(l),f(l+1),・・・,f(l+n-1)のうち少なくとも1つはnで割り切れる。でした。 どなたか、ひき続いたn個の整数の積のなかには、nの倍数が含まれることを証明してください。お願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

L-αをnで割った商をp,余りをrとすると L-α=np+r 0≦r<n だから r=0の時 L-α=np がnの倍数になる 0<r<nの時 L-α+n-r=n(p+1) がnの倍数になる 0<n-r<nだから L-α<L-α+n-r<L-α+n ↓L-α+n-r=n(p+1)だから ∴ L-α<n(p+1)<L-α+n

共感・感謝の気持ちを伝えよう!

質問者からのお礼

計算による証明ありがとうございます。

その他の回答 (3)

  • 回答No.4

>余りが1からn-1のn-1個あり、割られる数f(l+a)がaは0からn-1までn個あり、余りはf(l+a)ごとに違うから、余り0がでてくるという考えでよろしいでしょうか? 当方のレスでは、「整数 f(l), f(l+1), … , f(n) 」を連続した n 個の整数とみなしており、 原題中の「2次式 f(x)=x^2+ax+b) 」とは別物でした。 そう割り切れば、f(l), f(l+1), … …, f(n) の中に n で整除可能なものが 1 つあるのは当然…という論法。 「2次式 f(x)=x^2+ax+b」を利用する利点が理解できなかっただけです。  蒙御免。   

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お返事ありがとうございます。

  • 回答No.3

>整数a,bを係数とする2次式f(x)=x^2+ax+bを考える。f(α)=0となるような有理数αが存在するとき、以下のことを証明せよ。  は飛ばして、 >(2)任意の整数lと任意の自然数nに対して、n個の整数f(l),f(l+1),・・・,f(l+n-1)のうち少なくとも1つはnで割り切れる。  を考えれば良さそう。 f(l), f(l+1), … …, f(l+n-1) は 1 ずつ増えていく n 個の整数列。    ↓ まず f(l) を n で割ったときの余りが 0 なら、f(l) は n で割り切れる、ということ。 (f(1) = 0 の場合を含む) また、f(l) を n で割ったときの余りが 0 ではない場合、その余りは 1 以上で (n-1) 以下。 それに続く n 個の f(l+1), … …, f(l+n-1) は順に 1 ずつ増えていくから、f(l+n-1) まで の間で必ず 0 になる (ちまり、n で割り切れる、ということ) 。   

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お返事ありがとうございます。

質問者からの補足

よかったらお返事ください。 余りが1からn-1のn-1個あり、割られる数f(l+a)がaは0からn-1までn個あり、余りはf(l+a)ごとに違うから、余り0がでてくるという考えでよろしいでしょうか?

  • 回答No.1
  • asuncion
  • ベストアンサー率33% (1908/5773)

ある整数は1で割り切れる。 その整数より1小さい整数を左隣に、または1大きい整数を右隣に並べる。 このようにして2つの整数を連続して並べると、どちらかは必ず2で割りきれる。 連続している2整数を1つのかたまりとしてとらえ、その左隣に2整数の小さい方よりも 1小さい整数を並べるか、右隣に2整数の大きい方よりも1大きい整数を並べる。 このようにして3つの連続する整数を並べると、その中に3の倍数が必ず1個存在する。 以下同様に、n個の連続する整数を並べると、その中にnの倍数が必ず1個存在する。 よって、連続するn個の整数の積は、nで割り切れる(実はnの階乗で割り切れる)。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お返事ありがとうございます。 パズルのような証明ですね。

関連するQ&A

  • 数学の問題で質問があります。

    整数係数のn次の整式 f(x)=x^n+a1x^n-1+a2x^n-2+・・・+anについて。ある自然数kに対して、k個の整数f(1f(2f(3),,,f(k)がいずれもkで割り切れなければ、方程式f(x)=0は有理数の解を持たないことを証明せよ。 まず、どのようなことを示したいからこういうことをして、だからこの計算などをして・・・・のような感じで、この問題に挑む際にどのような方針を立てればよいのかなど教えてもらえないでしょうか? よろしくお願いします。

  • 3つの連続する整数の積は6の倍数であることを式で証明できませんか

    3つの連続する整数の積は6の倍数であることを式で証明できませんか たとえば3つの連続する整数の中に2と3あるいはその倍数が含まれているので その積は必ず6の倍数になるのですが、数を代入せず式として証明したいのですが どなたか証明式を教えてください、お願いします

  • 整数問題

    連続する3つの整数の積は6の倍数であることを示せ。 という問題なんですが、 任意の整数を n とおいて n(n+1)(n+2)と とりあえず置きました。 これを展開したりしてみましたが6の倍数であることを示せそうな式になりませんでした。 こんなときは (1) 1×2×3=6 (2) 2×3×4=24  (3) 3×4×5=60 (4) 4×5×6=120 (5) 5×6×7=210 ゆえにどれも6の倍数であるから 連続する3つの整数の積は6の倍数である。 と答えた場合 試験官はいくらか点数をくれるでしょうか? それとも 式で表さなければいけないのか。 証明の仕方も教えていただけたら助かります。

  • 連続する3つの整数の積は6の倍数?

    もしかしてすごい簡単なのかもしれないのですが、 さっぱり数学オンチなので教えてください(泣) 「連続する3つの整数の積は6の倍数であることを 証明しなさい」という問題の解答を教えてください~。

  • 連続する整数の積を用いた因数分解

    問 x(x-1)(x-2)=4・5・6の解を求めよ。 という問題において、連続する整数の積の考え方を用いることで瞬時にxの因数は6ということがわかってしまうらしいのですがなぜでしょうか? 連続する整数の積の考え方では 連続する整数の個数がm個の場合m!の約数を持つ ということなので 左辺も右辺もともに6の約数を持っているということはわかります。 しかし、約数ならば因数であるとは必ずしもいえないはずなのに 今回は問題を見ただけでわかってしまうのでしょうか? 回答お願いします。

  • 連続4整数

    【連続する4つの自然数の積は、 24の倍数であることを証明せよ】という問題なんですが さっぱりわかりません・・・(T.T) 連続3整数を使うのでしょうか? 教えてください。お願いします。

  • 連続関数

    関数の連続性を証明するところがわからないので質問します。 xが無理数ならば、f(x)=0とし、xが有理数で既約分数p/q(ただしq>0)のかたちに書けるときは、f(x)=1/qとする。 このように定義された関数fは無理数xで連続、有理数xで非連続である。その証明はやさしい。 xが無理数とし、εを任意の正数とする。1/q≧εすなわちq≦1/εとなる正整数qは有限個しかないから、δ>0を十分に小さく選ぶと開区間(x-δ,x+δ)には、上の条件を満たすqにたいする既約分数p/qは存在しない。したがって任意のy∈(x-δ,x+δ)に対して |f(y)-f(x)|=1/q<εとなる。fはxで連続である。一方、有理点のどんな近傍にも無理点が存在し、そこでfの値は0だから有理点では連続ではない。 自分は具体的な数としてx=√2、ε=0.4とすると、q≦2.5となり、q=1,2。 p/q=1/1,2/1,1/2,3/2などいろいろあげられますが、δ=0.01とすると(√2-0.01,√2+0.01)=(1.404・・・,1.424・・・)にはp/qはふくまれません。 ここからがわからないところなのですが、x±δは無理数に有理数を足したり引いたりした無理数であることがあるので、yが無理数になり、f(y)=0となり|f(y)-f(x)|=1/q<εが成立しないような場合があると思います。自分は本があっているなら、f(x)=0より、 f(y)=1/qになると予想しました。どなたか任意のy∈(x-δ,x+δ)に対して|f(y)-f(x)|=1/q<εとなる。を説明してください。お願いします。

  • 参考書の整数問題で疑問があります

    x^3-3x-1=0…(*)は、有理数解を持たないことを示せ。 考えは、 整数でない有理数解をもつと仮定すると、その解はp/q(p、qは互いに素の整数、q≧1)とおける。(*)に代入して両辺にq^3をかけるとp^3-3pq^2-q^3=0 p^3=q(3pq+q^2)…(**) 質問1:この式からは、、左辺はpの倍数だから、右辺はpの倍数で、しかしp、qは互いに素なので (ア)q=1 または (イ)q≠1かつ3pq+q^2はpの倍数 という独立した2つの条件が得られるという理解でいいですか? 質問2:参考書は、(ア)の条件だけ考えて、解がp/1(整数)だから前問に矛盾。としてましたが、(イ)は考えなくていいのですか?? 数学は得意ではないので教えてください…

  • 高校数学の整式の問題です

    f(x)=ax^3+bx^2+cx+dは有理数を係数とする多項式であって,任意の整数nに対しf(n)はつねに整数になるとする このとき,f(x)の係数の6倍は整数であることを証明せよ 解説ではf(n)が常に整数であるための条件はf(0)が整数でf(n+1)-f(n)はつねに整数であることと同値とあるのですが、何故これが同値なのか分かりません

  • 整数の問題(高1)の質問

    今高1です。宿題が明日提出で頑張ってやっているのですが、次の2問がどうしてもわかりません。ご教授ください。 問.次の事を証明せよ。 (1)連続した4つの整数の積は24の倍数である。 (2)nは整数とする。このとき、n^3+5nは6の倍数である。 (1)は、(n+1)(n+2)(n+3)(n+4)で考えると、計算は楽だったのですが、そこから証明できません。 (2)は……分かりませんでした。なんとなく、n^3+5n=(n-1)n(n+1)-n^2+6nが使えるかなぁ?とか思いましたが、できそうにありません。。(?)