• ベストアンサー

合成関数の微分について

y=sin^2 5x(sin2乗5x)の微分について y=(sin5x)^2と変形、u=sin5xとおき y'=(u^2)'(sin5x)' y'=(2u)(5cos5x) y'=10sin5x・cos5x までは計算できたのですが、解が5sin10xになっています。 y'=10sin5x・cos5xからどのような計算がされたのでしょうか。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.3

あっ、すいません。 y' = {1-cos(10x)}'/2 = 10・sin(10x)/2 = 5sin(10x) ですね。

hetaeigo1989
質問者

お礼

倍角の公式!!!!すっかり、忘れていました。 ありがとうございます。

その他の回答 (2)

回答No.2

sin(2t) = 2sin(t)・cos(t) なんですよ。 10sin5x・cos5x = 5(2sin5x・cos5x) で、t = 5xと考えれば、 5sin(2・5x) = 5sin(10x) 三角関数の2倍角の公式は、sinだけではなく、cosにもありまして、これを使うと sin^2(t) = {1-cos(2t)}/2 ですから、 y = sin^2(5x) = {1-cos(2・5x)}/2 = {1-cos(10x)}/2 y' = {1-cos(10x)}/2 = 10・sin(10x)/2 = 5sin(10x) と、同じ結果が出てきます。 三角関数の2倍角の公式は、たとえば、 http://w3e.kanazawa-it.ac.jp/math/category/sankakukansuu/kahouteiri/henkan-tex.cgi?target=/math/category/sankakukansuu/kahouteiri/nibaikaku-no-kousiki.html

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「倍角の公式」というのはご存知でしょうか?

関連するQ&A

  • 合成関数の偏微分法を用いた解き方

    いつもお世話になっています。 以下の問題を解いてみたのですが、あっているのか自信がもてません。 (特に、(4)(5)のsinθ,cosθが含まれるケース) 間違いなど、あればご指導のほど、よろしくお願いいたします。 【問題】 「合成関数の偏微分法」を用いて、継ぐの合成関数についてZu,Zv(またはZθ,Zr)を求めよ。 (2) z=x^2-y, x=u+v, y=uv Zu = Zx・Xu + Zy・Yu = 2x・1+(-1)・v=2x-v Zv = Zx・Xv + Zy・Yv = 2x・1+(-1)・u=2x-u (3) z=e^x・sin(y), x=u-v, y=uv Zu = Zx・Xu + Zy・Yu = e^x・sin(y)・1+e^x・cos(y)・v = e^x・sin(y)+v・e^x・cos(y) Zv = Zx・Xv + Zy・Yv = x^x・sin(y)・(-1)+e^x・cos(y)・u = -e^x・sin(y)+u・e^x・cos(y) (4) z=x+y, x=r・cosθ, y=r・sinθ Zθ= Zx・Xθ + Zy・Yθ = (1)・(-r・sinθ)+(1)・(r・cosθ) = (-r・sinθ)+(r・cosθ) = -r(sinθ-cosθ) Zr = Zx・Xr + Zy・Yr = (1)・(cosθ)+(1)・(sinθ) = sinθ+cosθ (5) z=x^2+2xy, x=r・cosθ, y=r・sinθ Zθ= Zx・Xθ + Zy・Yθ = (2x+2y)・(-r・sinθ)+(2x)・(r・cosθ) = 2{(x+y)(-r・sinθ)+x(r・cosθ)} = -2r{(x+y)(sinθ)-x(cosθ)} = -2r(x・sinθ+y・sinθ-x・cosθ) = -2r(r・cosθ・sinθ+r・sinθ・sinθ-r・cosθ・cosθ) = -2r^2(cosθ・sinθ+sinθ・sinθ-cosθ・cosθ) = -2r^2(sin^2θ+cosθsinθ-cos^2θ) Zr = Zx・Xr + Zy・Yr = (2x+2y)・(cosθ)+(2x)・(sinθ) = 2{(x+y)・(cosθ)+(x)・(sinθ)} = 2{x・cosθ+y・cosθ+x・sinθ} = 2{r・cosθ・cosθ+r・sinθ・cosθ+r・cosθ・sinθ} = 2r{cosθ・cosθ+sinθ・cosθ+cosθ・sinθ} = 2r{cos^2θ+2・sinθ・cosθ} = 2r・cosθ{cosθ+2・sinθ} 以上、よろしくお願いします。

  • 合成関数の偏微分

    z=f(x,y)で  x=rcosθ y=rsinθ としたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りでは偏微分していません。 誰か教えていただけるとありがたいです。

  • 合成関数の偏微分について

    z=f(x,y)で  x=rcosθ y=rsinθ と置いたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りではいずれも定数として扱われているようです 何故だかさっぱりわかりません。 どなたか知恵を貸していただけるとありがたいです。

  • 合成関数を2回偏微分するやり方?がわかりません;;

    y=r * sinθ x=r * cosθ とすると 合成関数の偏微分法から ∂f/∂r=cosθ*(∂f/∂x) + sinθ*(∂f/∂y) となります。 もう一回微分して ∂^2f/∂r^2= cos^2θ*(∂^2f/∂x^2) + sin^2θ* (∂^2f/∂y^2)+ 2sinθcosθ(∂^2f/∂x∂y) になります。 なんで 2回微分したときに cos^2θ とか sin^2θ とか出てくるんですか?  よくわからないので くわしくおしえてほしいです;;

  • 2階微分方程式の解き方

    2階微分方程式 y'' + 2y = sin 2x の一般解を求めよ。 (Ans. y = A cos √2 x + B sin √2 x - (1/2)sin 2x ) 斉次微分方程式 y'' + 2y = 0の一般解は 特性方程式より u = A cos √2 x + B sin √2 x と求まりましたが 1つの解(y1とする)をどのように予想するかが分かりません。

  • 合成関数の微分

    大学1年のものです。 次のような問題に出くわしました。 Z=f(x,y) x=rcosθ y=rsinθのとき次の関係式を示せ。 Zxx+Zyy=Zrr+(1/r)Zr+{1/(r^2)}Zθθ ここで、 Zx=∂Z/∂x  Zxx=∂^2Z/∂x^2 です。(r、θについても同様) まず、 Zr=Zx・cosθ+Zy・sinθ …(1) Zθ=-Zx・rsinθ+Zy・rcosθ …(2) ですよね? ここで疑問がわきました。 (2)でrsinθ=x、rcosθ=yと置き換えるのと置き換えないのとでは、Zθθが違う思います。 そこで教科書の答えを見ると、 置き換えて微分したほうの答えが書いてあったので、 置き換えて計算しないとダメなのかと思ったのですが、 (1)においてはcosθ=x/r、sinθ=y/rと置き換えないのでしょうか? というか、教科書には置き換えないほうの結果が載っていました。 自分でもcosθは置き換えといて、置き換えた後のrがそのままなのはおかしいと思いますが、なぜrcosθを置き換えてcosθを置き換えないのかがわかりません。 質問を要約すると なぜrcosθを置き換えてcosθを置き換えないのか? ということです。 ちなみに教科書に載っていた答えは、 Zrr=Zxx(cosθ)^2+Zyy(sinθ)^2+2Zxy・sinθcosθ Zθθ=Zxx・r^2(sinθ)^2+Zyy・r^2(cosθ)^2-2Zxy・r^2・sinθcosθ-(Zx・rcosθ+Zy・rsinθ) です。 非常にわかりにくい文章だとは思いますが、教えていただければ助かります。

  • 三角関数の微分

    IIICをやってて少し気になったので 質問させてください “y=sin(3x) と表されるとき(dy/dx)を求めよ” という問題で私は2つの解答例が思い浮かびました [解答例1] u=3xと置くと (dy/du)=3 (du/dx)=u*cos(u) となり、合成関数の微分法の公式から (dy/dx)=(dy/du)*(du/dx) =(3)*{u*cos(u)} =3*3x*cos(3x) =9x*cos(3x) (答) [解答例2] 3倍角の公式から sin(3x) =3sin(x)-4{sin(x)}^3 よって (dy/dx) =[3sin(x)]'-[4{sin(x)}^3]' =3cos(x)-12[{sin(x)}^2]*[cos(x)] (答) となってしまい、同じ式を微分したのに 異なる解答が出てきます。 この場合どちらが正しいのでしょうか。 あるいはどちらも正しいのでしょうか。 回答をお願いします

  • 複素関数cos(z)の微分について

    w=u+iv=cos(z)とおいたときに,wがzの全域でコーシー・リーマン方程式(∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x)を満たすことを示し,微分係数を求めよ.(z=x+iy,iは虚数単位) と言う問題です. 解答を見てみると,  cos(z)=cos(x)cosh(y)-isin(x)sinh(y) の加法定理の関係式を使い,  u=cos(x)cosh(y)  v=-sin(x)sinh(y) したがって,  ・∂u/∂x=-sin(x)cosh(y)  ・∂u/∂y=cos(x)sinh(y)・・・I  ・∂v/∂x=-cos(x)sinh(y)  ・∂v/∂y=-sin(x)cosh(y)・・・II よって,コーシー・リーマン方程式を満たしている. となっていました. 疑問なのは,複素関数cos(z)の微分について調べているのに,IとIIでそれぞれcosh(y),sinh(y)の微分をしていることです.  cosh(y)=cos(iy),isinh(y)=sin(iy) なので,これも複素関数の微分となり,ここでは使ってはいけないのではないのでしょうか? ほかの方法があれば教えてください.また,  {cosh(y)}'=sinh(y),{sinh(y)}'=cosh(y) となる理由もよろしくお願いします.

  • n階偏導関数の問題を教えて下さい。

    分からなくって困っています。 問題は (1)u=cos(x-y)cos(x+y) (2)u=sin(x-y)sin(x+y) (3)u=sin(x-y)cos(x+y) について、n階偏導関数をすべて計算しなさい(n=1,2,・・・) という問題です。 sinとかcosを変形すると思うんですが、やり方が分かりません。 教えて下さい. お願いします

  • 微分ができない・・・

    こんばんは。 y=sinルート(x^2+x+1) を微分するとx^2+x+1をuとおくと y’=cos1/2ルートu 掛けるu’ とすると答えが違うのですがなぜでしょうか?