• ベストアンサー
  • すぐに回答を!

2階微分方程式の解き方

2階微分方程式 y'' + 2y = sin 2x の一般解を求めよ。 (Ans. y = A cos √2 x + B sin √2 x - (1/2)sin 2x ) 斉次微分方程式 y'' + 2y = 0の一般解は 特性方程式より u = A cos √2 x + B sin √2 x と求まりましたが 1つの解(y1とする)をどのように予想するかが分かりません。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数554
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

sin 2x が斉次方程式の解にならないので a sin 2x + b cos 2x とおくのがふつ~.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます!!

関連するQ&A

  • 微分方程式

    次の微分方程式を解けという問題がわかりません。 y''+4y=sin2x 特性方程式s^2+4=0よりs=±2i(虚数解) 補助方程式の一般解はy=Asin2x+Bcos2x 与方程式の右辺を微分して生じる関数は2sin2x,2cos2xであるが、 これらは上の一般解に含まれている。重複度は2なので、 特殊解を求めるために、 y1=ax^2*sin2xとおく y1'=2a(xsin2x+x^2cos2x) y1''=2a(sin2x+4xcos2x-2x^2sin2x) これらを与方程式に代入すると 2asin2x+8axcos2x-4ax^2sin2x+4ax^2sin2x=sin2x となってしまって解けませんでした。どこを直せばいいでしょうか?

  • 微分方程式

    二階の微分方程式について質問があります。 例えば、 x''+x'+2x=0 これを解くとするじゃないですか。 すると、特性方程式の根は-1±i√7となるので、 一般解はx=C(exp-y)cos(√7)y+c(exp-y)sin(√7)y となりますよね? では、 x''+x'+2x=α と=0ではなく=定数 と式が与えられているときはどのようにとけば良いのでしょうか? =0という問題は色々あるのですが、=定数というのはまだ見たことがありません。 また特殊解はどのように求めますか?

  • 微分方程式

    微分方程式の勉強をしているのですが、 本の微分方程式を解く例題で y''-2y'+y=xe^x 特性方程式s^2-2s+1=0は2重解s=1をもつ。これより補助方程式の一般解は y=e^x(Ax+B) である。 与方程式の右辺を微分して生ずる関数は、xe^x,e^xであるが、これらは 上の一般解に含まれている。このような場合特殊解を求めるために、xe^xに特性方程式の解1の重複度2だけxをかけて、 y1=ax^3e^xとおくと y1'=a(x^3*e^x+3x^2*e^x),y1''=a(x^3*e^x+6x^2*e^x+6xe^x) これらを与方程式に代入すると6axe^x=xe^xよりa=1/6 よってy=e^x(Ax+B+x^3/6) とあるのですが、上文にある重複度っていうのがわかりません。 例えば、特性方程式の解が2±i(虚数解)で、これより 補助方程式の一般解はy=e^(2x)(Asinx+Bcosx) 与方程式の右辺がe^(2x)のときの重複度はどうやって考えれば いいでしょうか?

  • 微分方程式(非斉次)について

    微分方程式(非斉次)について質問させてください 問題 y''-3y'+2y=exp(2x) で自分は、特性方程式から u=Aexp(x)+Bexp(2x) を出しました。次に非斉次y''-3y'+2y=exp(2x)の特殊解を求めるために y1=aexp(2x)〔ただしaは定数〕 とおき解こうとしたのですが、その問題の解答には、『非斉次の特殊解を求めるとき、y1=aexp(2x)とおくことはできない。この場合はy1=xaexp(2x)〔ただしaは定数〕とおく』 と書いてあったのです。しかし、自分は何故 y1=aexp(2x)とおくことはできないか分かりません、お手数ですが教えていただけないでしょうか?

  • 微分方程式

    問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。

  • 2階線形同次微分方程​式

    以下の問題の解き方が理解できません。 途中の計算なども詳しく教えて頂けると幸いです。 (1) 2階線形同次微分方程式の関数と,二つの関数y1とy2および初期条件の対が与えられている.最初に二つの関数y1とy2が微分方程式の解であることを確認せよ.次に,初期条件を満たす特殊解を求めよ. (1) y''-y=0; y1=e^x, y2=e^-x; y(0)=0, y'(0)=5 (2) y''+4y=0; y1=cos2x, y=sin2x; y(0) = 3, y'(0)=8 (3) y''-3y'+2y=0; y1=e^x, y2=e^2x; y(0)=1, y'(0)=0

  • 4階の微分方程式の解き方を教えてください!

    問題で与えられる微分方程式は画像として添付しました。 (1) f(x)=0 のとき、この微分方程式の一般解 (2) f(x)=sinx のとき、この微分方程式の一般解 それぞれの求め方を教えていただけませんか? 自分で計算した結果 (1)y=(C1x+C2)cos2x+(C1x+C2)sin2x (A,Bは任意定数)となりました。 間違っているでしょうか?詳しい一般解の導き方を教えてください (2)特殊解をどのようにおけばいいのか分かりません  おき方と解法を教えていただきたいです

  • 微分方程式が解けません

    次の問題がどうしても解けません。 解き方のヒントを教えていただけないでしょうか。 また、今まで「特解」は非斉次微分方程式にしか出てこないと思っていたのですが、 この場合の「特解」とは何のことなのでしょうか。 特解y=xをもつ下記の微分方程式の一般解を求めよ。 (x^2 - 1)y'' - 2xy' + 2y = 0

  • 微分方程式の一般解について

    次の二式の微分方程式があります。 y''''+2y''=0 y''''+y'''+y''=0 上の方の特性方程式の根はλ=0(二重根)、λ=±√2i で答えが、 C1+C2x+C3cos√2x+C4sin√2x に対して 下の方の特性方程式の根はλ=0(二重根)、λ=-1/2±(√3/2)i で答えが、 C1+C2+C3*e^(-1/2)cos(√3/2)x+C4*e^(-1/2)sin(√3/2)x ですが、 何故上の方がC2にxがかかっていて下にかかっていないのですか? どなたか導出過程を教えてください。

  • 二階微分方程式の問題

    y"+4y=2xsin2x 解:Asin2x+Bcos2x-1/4x^2cos2x+1/8xsin2x の問題なのですが、 補助方程式y"+4y=0の一般解は特性方程式から、 Asin2x+Bcos2xとわかるのですが。 特殊解の-1/4x^2cos2x+1/8xsin2x の求め方がわかりません。 どなたか教えてください。

専門家に質問してみよう