- 締切済み
- すぐに回答を!
微分方程式
微分方程式の勉強をしているのですが、 本の微分方程式を解く例題で y''-2y'+y=xe^x 特性方程式s^2-2s+1=0は2重解s=1をもつ。これより補助方程式の一般解は y=e^x(Ax+B) である。 与方程式の右辺を微分して生ずる関数は、xe^x,e^xであるが、これらは 上の一般解に含まれている。このような場合特殊解を求めるために、xe^xに特性方程式の解1の重複度2だけxをかけて、 y1=ax^3e^xとおくと y1'=a(x^3*e^x+3x^2*e^x),y1''=a(x^3*e^x+6x^2*e^x+6xe^x) これらを与方程式に代入すると6axe^x=xe^xよりa=1/6 よってy=e^x(Ax+B+x^3/6) とあるのですが、上文にある重複度っていうのがわかりません。 例えば、特性方程式の解が2±i(虚数解)で、これより 補助方程式の一般解はy=e^(2x)(Asinx+Bcosx) 与方程式の右辺がe^(2x)のときの重複度はどうやって考えれば いいでしょうか?
- atrasplay
- お礼率46% (52/113)
- 回答数2
- 閲覧数616
- ありがとう数2
みんなの回答
- 回答No.2
- info22
- ベストアンサー率55% (2225/4034)
#1です。 A#1の補足の回答 > では、本の例題だったらxe^x,e^xの両方が重複しているので > 重複度が2になるということですか? そういうことです。 どちらの定数倍も重複(重複度2)していて、特殊解として使えないという事ですね。
関連するQ&A
- 微分方程式
次の微分方程式を解けという問題がわかりません。 y''+4y=sin2x 特性方程式s^2+4=0よりs=±2i(虚数解) 補助方程式の一般解はy=Asin2x+Bcos2x 与方程式の右辺を微分して生じる関数は2sin2x,2cos2xであるが、 これらは上の一般解に含まれている。重複度は2なので、 特殊解を求めるために、 y1=ax^2*sin2xとおく y1'=2a(xsin2x+x^2cos2x) y1''=2a(sin2x+4xcos2x-2x^2sin2x) これらを与方程式に代入すると 2asin2x+8axcos2x-4ax^2sin2x+4ax^2sin2x=sin2x となってしまって解けませんでした。どこを直せばいいでしょうか?
- 締切済み
- 数学・算数
- 2階微分方程式の解き方
2階微分方程式 y'' + 2y = sin 2x の一般解を求めよ。 (Ans. y = A cos √2 x + B sin √2 x - (1/2)sin 2x ) 斉次微分方程式 y'' + 2y = 0の一般解は 特性方程式より u = A cos √2 x + B sin √2 x と求まりましたが 1つの解(y1とする)をどのように予想するかが分かりません。
- ベストアンサー
- 数学・算数
- 回答No.1
- info22
- ベストアンサー率55% (2225/4034)
>与方程式の右辺がe^(2x)のときの重複度はどうやって考えれば いいでしょうか? e^(2x) と 2±i(虚数解) は重複していませんので 特殊解は、ae^(2x) とおいて 4ae^(2x)-4ae^(2x)+ae^(2x)=e^(2x) a=1と出てきます。 特殊解は e^(2x) となります。 よって y={Asinx+Bcosx+1}e^(2x) ですね。 重複度は、特性方程式から出てくる一般解の1つと 一致する e^(2x)sin(x) や e^(2x)sin(x) が右辺に出てきた場合ですね。 そんな場合(重複度1に相当)は 特殊解を xe^(2x){asin(x)+bcos(x)} とおけばいいでしょうね。
質問者からのお礼
ありがとうございます。 では、本の例題だったらxe^x,e^xの両方が重複しているので 重複度が2になるということですか?
関連するQ&A
- y´´+y´-2y=e^x+xの微分方程式
答えに自信が持てません、アドバイスをお願いします。 y´´+y´-2y=e^x+xの微分方程式ですが、 これを2階非同次線形ay´´ + by´ + c = r(x)の解法で解いたところ、 特性方程式より t^2+t-2=0 , (t+2)(t-1)=0 ,t=-2,1 (2個の実数解) 一般解はC1e^(-2x)+C2e^(x) 2個の実数解の時、特異解は ay´´ + by´ + c = r(x) , t=α,βとして 1/{a(α-β)}{e^(αx)∫e^(-αx)r(x)dx - e^(βx)∫e^(-βx)r(x)dx}なので、α=-2,β=1として代入し、 -1/3{e^(-2x)∫e^(2x)(e^x+x)dx - e^(x)∫e^(-x)(e^x+x)dx} =-1/3[e^(-2x){(1/3)e^(3x)+(1/4)e^(2x)・(2x-1)} - e^(x){x+e^(-x)・(-x-1)}] =-1/3[(1/3)e^x+(1/4)(2x-1) - {xe^x-x-1}] =-1/3[(1/3)e^x+(2x/4)-1/4 - xe^x+x+1] =-1/3[(1/3)e^x+(3x/2)+3/4-xe^x] =-1/36[4e^x+18x+9-12xe^x] ∴C1e^(-2x)+C2e^(x)-1/36[4e^x+18x+9-12xe^x] でいかがでしょうか?
- ベストアンサー
- 数学・算数
- 微分方程式
問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。
- ベストアンサー
- 数学・算数
- 微分方程式(非斉次)について
微分方程式(非斉次)について質問させてください 問題 y''-3y'+2y=exp(2x) で自分は、特性方程式から u=Aexp(x)+Bexp(2x) を出しました。次に非斉次y''-3y'+2y=exp(2x)の特殊解を求めるために y1=aexp(2x)〔ただしaは定数〕 とおき解こうとしたのですが、その問題の解答には、『非斉次の特殊解を求めるとき、y1=aexp(2x)とおくことはできない。この場合はy1=xaexp(2x)〔ただしaは定数〕とおく』 と書いてあったのです。しかし、自分は何故 y1=aexp(2x)とおくことはできないか分かりません、お手数ですが教えていただけないでしょうか?
- ベストアンサー
- 数学・算数
- 微分方程式の問題
以下の微分方程式の問題が途中で解けなくなりました。ミス、ヒントなどありましたら回答お願いします。 (1)y''+y'-6y=10e^(2x)…(1) まず特性方程式をλ^2+λ-6=0を解いてλ=-3,2を出して 余関数をC1e^(-3x)+C2e^(2x) としました。 特殊解をyo=ae^(2x)と置き、 yo'=2ae^(2x)、yo''=4ae^(2x) として(1)にそれぞれ代入しました。 そうすると0*ae^(2x)=10e^(2x) となってしまい解けません。。。 (2)y''+y'=x+2…(2) (1)と同様にλ=0,1で余関数をC1+C2e^xとして、 特殊解をyo=a0x^2+a1x+a2と置き yo'=2a0x+a1 yo''=2a0 として(2)に代入するとa0=1/2、a1=1のふたつは出ますがa2が出ません・・・
- ベストアンサー
- 数学・算数
- 1階の線形微分方程式
1階の線形微分方程式 次の微分方程式の解き方が分かりません。いちおう、自分でもやりましたが、答えを先生が教えてくれないので困っています。さらに(3)はさっぱりです。 (1)y'+2y=6e^x (2)y'+y=sinx (3)xy'-2y=x^3e^x (1),(2)の自分なりで解いてみた答え (1) λ+2=0 λ= -2 よってこの微分方程式の一般解は y1=Ce^-2x ここで、yp=k1*e^x とおいて、ypを微分方程式内に代入をすると、 yp'+2yp=k1*e^x+2k1*e^x=3k1*e^x=6e^x k1=2 y2=2e^x よって y=y1+y2=C*e^-2x+2e^x (2) λ+1=0 λ= -1 よって、求める一般解は y1=Ce^-x ここで、特殊解を考えると yp=L*sinx+M*cosx yp'=L*cosx-M*sinx これを微分方程式に代入して yp'+yp=(L*sinx+M*cosx)+(L*cosx-M*sinx)=(L-M)sinx+(L+M)cosx ここで、 L-M=1 L+M=0 これを解いて L=1/2,M=-1/2 y2=1/2*sinx-1/2*cosx よって、y=y1+y2=Ce^-x+1/2*sinx-1/2*cosx
- ベストアンサー
- 数学・算数
- 微分方程式の問題ですが・・・
y´´-3y´+y=e^x cosx という微分方程式をy=e^x (Acosx+Bsinx)の形で求めよという問題ですが、同次方程式の解と特殊解の解を求めればいいと思うのですが、 特性方程式λ^2 -3λ+1=0で解きます。解の公式で解くとλ=3±√5/2という解がでたのですがあっているのでしょうか?もしあっているとしたら基本解は実数解になるのですが、y=e^x (Acosx+Bsinx)の形で求めよという問ですので基本階は共役複素数解にならないといけないですよね?僕はどこを間違えているのでしょうか?教えてください
- ベストアンサー
- 数学・算数
- 微分方程式の問題です。
微分方程式の逆演算子の問題なんですが、 (D^2+D+1)y=x^3-2 という問題なんですが、まず特性方程式でひとつの特殊解をみつけて 次にもうひとつの特殊解を見つけるわけなんですが y=(x^2-2)/(D^2+D+1) と変形したんですが因数分解も出来なくどうすればいいのかわかりません。 y=e^(-x/2) (Asin(3^1/2*x /2)+Bcos(3^1/2*x /2))+x^3-3x^2+4 の答えになります。
- ベストアンサー
- 数学・算数
質問者からのお礼
なるほど、わかりました。 ありがとうございます。