• 締切済み

非同次微分方程式(記号解法)

こんばんは! 記号解法が分かりません><分かる方お願いします>< (D^2+9)y=cos3x の一般解を求めよ という問題なのですが、特殊解が合いません。 わたしの解答は 特殊解: 1/f(D)cos3x=x^2sin3x/6 一般解: y=C1cos3x+(C2+x^2/6)sin3x なのですが、答えは 一般解: y=C1cos3x+(C2+x/6)sin3x でした。 どこでxの2乗が1乗になったのかがわかりません。 あと、(D^2-6D+10)y=5x^2-x+3 の場合はどうやって解くのでしょうか^^; 各項を分けて計算し足し合わせるのは分かるのですが、右辺にeが出ていない場合の解き方がわかりません。 eが0乗であると考えて 1/f(D)*5x^2=5*1/D^2-6D+10*x^2 としても1/100等が出てきて答えに合いませんでした。 よろしくおねがいします><

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

f(D) = D^2+9 だから f(s) = s^2+9 ですね. 「3iはf(s)=0の2重根」(2重「根」? ここは「解」でいいのでは? まあいいけど) ということは, (f(s) が s の 2次式だから) f(s) = s^2+9 = (s-3i)^2 と因数分解できる, と思っているということですね? 本当ですか? 「f^(m)(iB)=f^(2)(iB)で、(D^2+9)'=2D なのでDに3iを代入し分母を6iとしました。」もおかしいでしょ? なんで (D^2+9)' なの? m=2 としたなら, ここは 2階微分ですよね.

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

上については 1/f(D)cos3x=x^2sin3x/6 をどう導いたのでしょうか? 2乗が出てくる余地はないはずです. 下はいくつかやりかたがあると思うけど, 例えば 1/(D^2-6D+10) = (1/10){1/[1-(3/5)D+(1/10)D^2]} として {} 内を展開する 方法があります. 1/[1-(3/5)D+(1/10)D^2] = 1 - [-(3/5)D+(1/10)D^2] + [-(3/5)D+(1/10)D^2]^2 - ... だけど, これを適用するのは 5x^2-x+3 だから D^2 まで求めれば十分で 1 + (3/5)D + (1/10)D^2 + (9/25)D^2 = 1 + (3/5)D + (13/50)D^2. つまり全体として {[1 + (3/5)D + (13/50)D^2]/10}(5x^2-x+3) を計算すればいい.

pachi-3v
質問者

お礼

ありがとうございます! x^2ですが、公式に沿ったら出てきました。 ―公式― iBがf(s)=0のm重根のとき、 1/f(D)cosBx=x^m*Re{e^iBx/f^(m)(iB)} 3iはf(s)=0の2重根なのでm=2でx^2が出てきました。 f^(m)(iB)=f^(2)(iB)で、(D^2+9)'=2D なのでDに3iを代入し分母を6iとしました。 下は理解できました! ありがとうございます!

関連するQ&A

  • 微分方程式の解法を教えてください!

    常微分方程式の解法はどんなものがあり、どのような場合に適用すれば解けるでしょうか。 解法を覚えても、それが適用される場合についての判断ができません。教えてください! 以下の場合だとどのように解けばよいでしょうか。 (1)d^2x/dt^2+ω^2x=0の一般解の求め方。(ωは定数) (2)dx/dt=-c^2y、 dy/dt=c^2x の一般解の求め方。(cは定数) (3)dx/dt=u、    du/dt=-kx-cu+f(t) (k,cは定数)  のとき  (1)f(t)=0のとき、t=0でx=x0のもとでの解を求め   る。  (2)f(t)=cosωtのときの解。

  • 非同次定数係数線形微分方程式

      y'' + 6y' + 10y = 2sin(x)   D^2 + 6D + 10 = 0   D = -3±i なので   y'' + 6y' + 10y = 0 の解 y0 は   y0 = C1e^(-3x)cos(x) + C2e^(-3x)sin(x)  ここまではすぐわかりますが   (D^2 + 6D + 10)y = 2sin(x) としたときの D^2 + 6D + 10 の逆演算子がわかりません。  私の持っている参考書には sin が絡みそうな公式は   [1/(D^2+k^2)]sinβx = sinβx/(k^2-β^2) k≠β   [1/(D^2+β^2)]sinβx = (-x/2β)cosβx k≠β というタイプのものしか見当たりません。

  • 4階の微分方程式の解き方を教えてください!

    問題で与えられる微分方程式は画像として添付しました。 (1) f(x)=0 のとき、この微分方程式の一般解 (2) f(x)=sinx のとき、この微分方程式の一般解 それぞれの求め方を教えていただけませんか? 自分で計算した結果 (1)y=(C1x+C2)cos2x+(C1x+C2)sin2x (A,Bは任意定数)となりました。 間違っているでしょうか?詳しい一般解の導き方を教えてください (2)特殊解をどのようにおけばいいのか分かりません  おき方と解法を教えていただきたいです

  • 微分方程式の微分演算子による解法

    来月上旬に大学院入試を受けるので、それに向けて現在勉強中です。 微分方程式で分からない問題があったので教えてください。 特に微分演算子を用いた解法に従って解く方法を教えていただければと思います。 (それ以外の解き方も参考になるので教えていただけたら助かります。) 問題は (1) (D^4+2D^2+1)y=x*sin(x) (2) y'''-2y'+4y=(e^x)*cos(x) Dy=y'=dy/dxです。 私の持っている本では、定係数非同次線形常微分方程式をΦ(D)y=f(x)と表したときに、Φ(D)が既約実2次式を持つ場合、非同次項f(x)が ・多項式 ・e^(ax) ・cos(ax) ・sin(ax) の場合のみについて解説してあり、上記のような項についての計算がわからなかったので質問させていただきました。

  • 連立微分方程式

    dx/dt = 2x dy/dt = cos(t)*x+y の一般解について,僕が出した答えは以下のようなのですが,正解なのかがわかりません。 x = C1e^(2t) y = e^t{C1*e^(t)/2(sin(t)+cos(t))+C2} C1,C2は任意定数。

  • 微分方程式の一般解

    微分方程式の一般解を求める問題なのですが、どうしてもよく分かりません。 y'6+4y'2=40x^3  (ここで'○は微分の回数を示すとします。また、以下ではD=d/dxのことです) 同時方程式(D^6+4D^2)y=D^2(D^4+4)y=D^2{(D^2+2)^2-4D^2}y=D^2(D^2+2+2D)(D^2+2-2D)y=D^2{(D+1)^2+1}{(D-1)^2+1}y=0 の基本解は{1、x、e^(-x)cosx、e^(-x)sinx、e^xcosx、e^xsinx} 次に特殊解Y(x)を求める。 非同次項R(x)=40x^3は同時方程式40D^4y=0の解だから、 特殊解Y(x)の式Yは同時方程式 40D^4・D^2{(D+1)^2+1}{(D-1)^2+1}y=0の解である。 この基本解{1、x、x^2、x^3、x^4、x^5、e^(-x)cosx、e^(-x)sinx、e^xcosx、e^xsinx}から与式の基本解を除いたx^2、x^3、x^4、x^5の一次結合として Y(x)=Ax^2+Bx^+Cx^4+Dx^5とおく。 与式の左辺に代入… と続いていくのですが、どうにもしっくりきません。 答えも y=(20/3)x^3+c1+c2x+e^(x/√2){c3cos(x/√2)+c4sin(x/√2)}+e^(-x/√2){c5cos(x/√2)+c6sin(x/√2)} となり、私の解からでは到底結びつくとは思えないです。 気になるのが 「非同次項R(x)=40x^3は同時方程式40D^4y=0の解だから」 としていますが、本当にこれで良いのか自信もありません。 もし間違えていたら解説をお願いします。 また、他に違うというようなところがあったら指摘してください。 回答、よろしくお願いします。

  • 微積(微分方程式)

    下記の問題の解き方を教えてください。 1.一般解を求めよ y' + 2y tan x = sin x (答え:y = cos x + C cos^2 x)・・・(1) <自分の解いたやり方(間違っています)> y' + 2y tan x=0 y'= -2y tan x ∫(1/ (2y)) dy = -∫(sin x / cos x) dx log |y| = 2log |cos x| + 2C y/cos^2 x = ±e^2C(=Aとおく) y = u cos^2 x y' = (u'cos^2 x )-2u cos x sin x=(u'cos^2 x )-u sin 2x これを(1)へ代入 u' cos^2 x = sin x u'=(1-cos^2 x)/cos^2 x ∫du = ∫((1/cos^2 x) - 1) dx u=tan x - x + C y=u cos^2 x = cos^2 x(tan x - x + C) // よろしくお願いします。

  • 1階非同次線形微分方程式の解法について

    難しすぎてよくわからないので質問します。 いろんなサイトを見てもよくわからなかったので分かりやすい回答おねがいします。 みなさんから見れば、なぜこんなことも分からないの、なにを言っているの?と思うのかもしれませんが、丁寧に解説してくれるとありがたいです。 非同次方程式の一般解=同次方程式の一般解+非同次方程式の特殊解となるようですが、 なぜこれが成り立つのかわかりません。 いろんなサイトみたのですが、数式がいっぱい書いてあってなにがなんだかわからない状態です。 まだ、変数分離の解法しかやっていないので、難しいことを言われても分からなくなってしまいます。 まず、1階線形微分方程式は、dy/dx+f(x)y=g(x)などのように表されるということは分かりました。 そしてこのg(x)を0としたものが非同次となるわけですよね。 つまり、dy/dx+f(x)=0です。 そしてこの解法として、まずy=u(x)が同次方程式の一般解としようと書いてあります。 ですが、もうこの時点でよくわからないです。 なぜ一般解としようと考えたのかってとこに疑問があります。 特殊解でもなく、なぜ一般解なのかということです。 そして、これを代入すると、du(x)/dx+f(x)u(x)=0となるのはわかります。 ただ代入するだけなので。 次に、y=v(x)を非同次方程式の特殊解としようと書いてあります。 でもなぜ非同次方程式の特殊解にするのかわかりません。 同次方程式の特殊解と考えてはだめなのかと思ってしまします。 まさか適当においたとも思えませんし。 なにかの考えがあってのことだと思いますし。 ようするに、なぜこのようにおいたのか、道筋というか目的ってのがよく見えないのです。 いったいなにをやっているのか。 たぶん一般解と特殊解の関係?みたいなのがわかっていないので、悩んでいるような気がします。 つまり、 非同次方程式の一般解=同次方程式の一般解+同次方程式の特殊解とおくことはできないのかと。 質問の意味あまりわからないかもしれませんが、すいません。 わからなすぎて、なにが分からないのかもわからない状態で。 丁寧に解説してくれるとありがたいです。

  • 微分方程式

    次の微分方程式を解けという問題がわかりません。 y''+4y=sin2x 特性方程式s^2+4=0よりs=±2i(虚数解) 補助方程式の一般解はy=Asin2x+Bcos2x 与方程式の右辺を微分して生じる関数は2sin2x,2cos2xであるが、 これらは上の一般解に含まれている。重複度は2なので、 特殊解を求めるために、 y1=ax^2*sin2xとおく y1'=2a(xsin2x+x^2cos2x) y1''=2a(sin2x+4xcos2x-2x^2sin2x) これらを与方程式に代入すると 2asin2x+8axcos2x-4ax^2sin2x+4ax^2sin2x=sin2x となってしまって解けませんでした。どこを直せばいいでしょうか?

  • 2階線形同次微分方程式について。

    2階線形同次微分方程式について。 解が複素解の場合の質問です。 複素解λ1,2をもつ時、一般解は、Z(X)=C10e^λ1x+C20e^λ2x となり、これを整理すると、 y(X)=e^(-ax/2)[C1cos(√(―a^2+4b)x/2)+C2sin(√(―a^2+4b)x/2)] となるとのことです。そこで、教科書にC1=C10+C20の実数部分  C2=iC10-iC20の実数部分 と書いてあります。 この実数部分とはどういうことなのですか? なぜ実数部分なのですか? よくわかりません。 どうぞよろしくお願いいたします。 どうぞよろしくお願いいたします。