- ベストアンサー
- すぐに回答を!
二次方程式
次の二次方程式が実数の解をもつように、定数kの値の範囲を求めよ。 k^2x^2+(k+1)x+4=0 解法から全然わからないです。回答、よろしくお願いします。

- 回答数4
- 閲覧数127
- ありがとう数4
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.3
- KEIS050162
- ベストアンサー率47% (890/1878)
教科書、参考書の二次関数方程式の解の公式、判別式辺りを復習して、 出来れば、二次関数のグラフ、平方完成辺りも復習しておくと良いですね。 まずは、与式の判別式を導き出してみてください。kの二次不等式になるはずです。 次に、上の復習に引き続き、二次不等式の解き方の辺りを熟読してみてください。 これで、さっき導き出したkの二次不等式を解いてみてください。これがkの範囲となります。 この例題の場合、以外にさらっと答えが出て来ます。 参考:下の様な答えになるはず。(間違ってたらゴメンなさい。) 判別式: -15k^2+2k+1 ≧ 0 kの範囲: -1/5 ≦ k ≦ 1/3
関連するQ&A
- 数? 二次方程式の問題
数? 二次方程式の問題 2次方程式x^2-(a-2)x+(a/2)+5=0が、1≦x≦5の範囲に異なる2つの実数解をもつとき、定数aの値の範囲を求めよ。 という問題なんですけど、どうしても解けません。 解説して下さると嬉しいです。
- ベストアンサー
- その他(語学)
その他の回答 (3)
- 回答No.4
- over_the_galaxy
- ベストアンサー率25% (105/409)
基本は回答3でOKです。追加ですが 「2次」方程式であるためには k≠0 k=0の場合、1次方程式になってしまいます。
質問者からのお礼
わざわざ追加を入れてくださってありがとうございます! 助かりますm(__)m
- 回答No.2
- opechorse
- ベストアンサー率23% (435/1855)
幾何学的にとくなら y=k^2x^2+(k+1)x+4 をグラフ化して X軸と交点を持つ範囲を考える
質問者からのお礼
ご回答、ありがとうございました_(._.)_
- 回答No.1

「解の判別式」って、しってる?
質問者からのお礼
存在は知っているのですが、イマイチどこで使えばいいのかわかっていません。それでは意味がないんですけどね…(涙)
関連するQ&A
- 過去問(二次方程式)教えてください;
志望校の過去問なんですが、解説を読んでもどうしてもわからないところがあります・・・。 (2)の線(____)を引いてあるところから↓がわかりません。 2a^2-2a-k^2+1≧0 がなりたてば、 求めるkの値の範囲は 1-2(-k^2+1)≦0 になるのでしょうか・・・?? かなり考えたのですがわからなくて・・・お願いします; ※^2は2乗です。 A,b,kを実数とする。Xの二次方程式 X^2-2(a-1)x-b=0・・・・・A X^2-2kx-b+a^2=0・・・・・B について、次の問いに答えよ。 (1)方程式Aが実数の解を持つようなa,bの関係式を求め、その表す領域をab平面状に図示せよ。 答え:b≧-(a-1)^2 (2)方程式Bが実数の解を持つ時には、方程式Aも必ず実数の解を持つようになる定数kの値の範囲を求めよ。 答え:Bが実数解を持つための必要十分条件は k^2-(-b+a^2)≧0 つまりb≧a^2-k^2 である。 いま、方程式Bが実数解を持つ時、方程式Aが必ず実数解をもつための必要十分条件は、任意のaに対して a^2-k^2≧-(a-1)^2 つまり2a^2-2a-k^2+1≧0 がなりたつことである。 _________________↓ したがって求めるkの値の範囲は 1-2(-k^2+1)≦0 つまり2k^2-1≦0 ∴-√2/2≦k≦√2/2・・・答え
- ベストアンサー
- 数学・算数
- 二次方程式の解の配置について
aを実数の定数として、異なる二つの実数解をもつ二次方程式x^2+ax+2a^2-8=0がある (1)x=0が一つの解で、他の解が負のときaの値を求めよ (2)少なくとも1つの解が正ならば、なにか<a<なにかである (1)はできたのですが、(2)が分かりません…解答お願いします
- ベストアンサー
- 数学・算数
- 二次方程式 共通解の問題
2つの二次方程式、x^2+2mx+10=0、x^2+5x+4m=0がただひとつの共通な実数解をもつとき、定数mの値とその共通解を求めよ。 共通解をαとおいて、αと定数mの連立方程式を解いて出た答えの、m=5/2、α=2をなぜそのまま答えとしてはいけないのか、その理由を教えてください。 答えはmが-7/2、αが2。 m=5/2を代入したら判別式が<0になるからとかそういうことは聞いてません。 ちゃんとした理由がほしいので詳しい回答お願いします。
- 締切済み
- 数学・算数
- 高1 2次関数のグラフと二次方程式
a、bは定数とする。すべての実数aに対して、xの二次方程式 x2乗+ax+a2乗+3ab+3=0 が 実数解をもたないときのbの値の範囲を求めよ。 という問題なのですが、判別式を使って a2乗+4ab+4>0 というところまではわかりますが、この先が全くわからないのです。 どなたか親切な方ご指導お願いします。
- ベストアンサー
- 数学・算数
- 数学 二次方程式 定数の範囲について
x^2+ax+3a=0 (1) x^2-ax+a^2-1=0 (2) 二つの二次方程式がともに実数解をもつように定数aの値を求めよ。 (1) 判別式D≧0を使う。 a^2-12a≧0 a≦0 、 12≦a (2) 同じく判別式D≧0を使う。 -3a^2+4≧0 a≦-(2√3)/3 、 (2√3)/3≦a 私の答え a≦0 、 (2√3)/3≦a となったのですが、答えは -(2√3)/3≦a≦0 のようです。 私はどこで間違ったのでしょうか? 調べて考えた結果、D≧0ではなく、どこかでD≦0となる部分があるように思えました。 ですが、どこでなるのかもわからないし、なぜD≦0になるのかもわかりません。 実数解を持つようにいわれてるのに、答えに負の範囲があるのも疑問です。(私の間違った答えにも0≧aがあるのですが、なぜなんでしょうか。)
- ベストアンサー
- 数学・算数
- 数I 二次方程式の範囲 訂正
もう一度解きなおしてみました。 「方程式x²-2ax+2a²-5が1より大きい相異なる2個の実数解をもつような定数aの値の範囲を求めよ。」 自分の回答▽ f(x)=x²-2ax+2a²-5とするとf(x)=(x-a)²+a²-5 二次方程式f(x)=0が1より大きい相異なる2個の実数解をもつための条件は放物線y=f(x)が1より大きいx軸の正の部分と異なる2点で交わることである。これは次の(1)~(3)が同時に成り立つことと同値である。 (1)f(x)=0の判別式をDとするとD/4=a²-(-5)=a²+5>0 これを解いてa<-√5、√5<a…(1) (2)放物線y=f(x)の軸は直線x=aなので、この軸は1より大きいからa>1…(2) (3)f(x)>0から1-2a+2a²-5>0よってa>2、a>5…(3) (1)(2)(3)の共通範囲を求めてa>5 ,, となりました。合ってますか? それと、この放物線のグラフを書く場合はy軸は省略してもいいのでしょうか。
- 締切済み
- 数学・算数
質問者からのお礼
判別式は知っていたのですが、どこで使えばいいのかよくわかっていませんでした…。 丁寧な回答、ありがとうございました!!