• ベストアンサー
  • 困ってます

過去問(二次方程式)教えてください;

志望校の過去問なんですが、解説を読んでもどうしてもわからないところがあります・・・。 (2)の線(____)を引いてあるところから↓がわかりません。 2a^2-2a-k^2+1≧0  がなりたてば、 求めるkの値の範囲は 1-2(-k^2+1)≦0 になるのでしょうか・・・?? かなり考えたのですがわからなくて・・・お願いします; ※^2は2乗です。 A,b,kを実数とする。Xの二次方程式 X^2-2(a-1)x-b=0・・・・・A X^2-2kx-b+a^2=0・・・・・B について、次の問いに答えよ。 (1)方程式Aが実数の解を持つようなa,bの関係式を求め、その表す領域をab平面状に図示せよ。 答え:b≧-(a-1)^2 (2)方程式Bが実数の解を持つ時には、方程式Aも必ず実数の解を持つようになる定数kの値の範囲を求めよ。 答え:Bが実数解を持つための必要十分条件は k^2-(-b+a^2)≧0  つまりb≧a^2-k^2 である。 いま、方程式Bが実数解を持つ時、方程式Aが必ず実数解をもつための必要十分条件は、任意のaに対して a^2-k^2≧-(a-1)^2 つまり2a^2-2a-k^2+1≧0  がなりたつことである。 _________________↓ したがって求めるkの値の範囲は 1-2(-k^2+1)≦0 つまり2k^2-1≦0 ∴-√2/2≦k≦√2/2・・・答え

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数130
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • debut
  • ベストアンサー率56% (913/1604)

f(a)=2a^2-2a-k^2+1と考えると、任意のaについてf(a)≧0 となるのは、f(a)の放物線がa軸に接するか,a軸と交わらないかです。 接するときは 判別式=0、交わらないときは 判別式<0 だから、 まとめて 判別式≦0 となります。 したがって、1-2(-k^2+1)≦0

共感・感謝の気持ちを伝えよう!

質問者からのお礼

a軸との接し方を見るんですね。判別式をすっかり忘れていました・・・。ありがとうございます!

関連するQ&A

  • 二次方程式

    二つの二次方程式、x^2ー(a-2)x-9=0とx^2-x-3a=0がともに 実数解を持つようなaの値の範囲を求めよ。 またこれらの二次方程式が共通の実数解を持つようなaの値をすべて求めよ。 上記の問題の解き方が、まったくわかりません、解き方を教えてください。

  • 二次方程式

    (1)二次方程式x²-6x+2k+1=0が実数解をもつような定数kの値の範囲を求めよ。 (2)二次方程式x²-6(k+2)x+(k+1)²=0が重解をもつときkの値を求めよ。 解法が分からないです。回答、よろしくお願いします。

  • 二次方程式について

    二次方程式について質問です。今x^2+ax+b=0という方程式が与えられているとき、xの二つの解、もしくは二つの解の実数部が負であるための必要十分条件はa>0かつb>0であると聞きました。なぜこうなるのかわかりません。もし解がある場合ですと、xはx=(-a+-sqrt(a^2-4b))/2となりますよね?(sqrtはルートの意味で使いました)じゃあ別にb>0という条件はいらないと思うのですが・・・。 よろしくお願いいたします。

その他の回答 (1)

  • 回答No.1

b≧-(a-1)^2 ‥‥(1)、と、b≧a^2-k^2 ‥‥(2)をab平面上に図示して考えてください。 条件(1)の下で、(2)が成立するから、a^2-k^2≧-(a-1)^2‥‥(3)が成立します。 これをaについて整理すると、2a^2-2a-k^2+1≧0となります。 これがaの任意の実数について成立するためには、aの2次の係数が正から、D=1-2(-k^2+1)≦0です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほどー!! 判別式ですね。ありがとうございました!

関連するQ&A

  • 二次方程式

    次の二次方程式が実数の解をもつように、定数kの値の範囲を求めよ。 k^2x^2+(k+1)x+4=0 解法から全然わからないです。回答、よろしくお願いします。

  • 二次方程式で

    二次方程式でaとbとcがこんがらがって理解できないものがあるんです。X^2+kx+k+3=0だと文字が四つもあってどこがaでbでcなんですか?ちなみに文字が三つのなら、かろうじて解けます。 X^2+kx+k+3=0が重解を持つように定数kの値を求めよ。またその重解をもとめよ。この問題です。 以上です、お願いします。

  • 数? 二次方程式の問題

    数? 二次方程式の問題 2次方程式x^2-(a-2)x+(a/2)+5=0が、1≦x≦5の範囲に異なる2つの実数解をもつとき、定数aの値の範囲を求めよ。 という問題なんですけど、どうしても解けません。 解説して下さると嬉しいです。

  • 二次方程式の解の求め方。

    xの二次方程式、x^2-kx-2k-10=0 [kは定数] の解の一つがkであるときkの値はいくつか? という問題の解の求め方がよくわかりません。 教えてくださると助かります。

  • 二次方程式の解の存在範囲についての問題が解けません

    Xの二次方程式 x^2+mx-m+8=0について、次の問いに答えよ。 (1)解の1つが2である時のmの値を求めよ。また、このときのもう一つの解を求めよ。 (2)2つの異なる実数解を持つ時のmの範囲を求めよ。 (3)2つの異なる実数解がともに正となるときのmの値の範囲を求めよ。 学校の課題で出されたプリントです。どうしても解けなくて困っています。誰か解ける方よろしくお願いします!(3)についてはグラフの書き方もお願いします。

  • 数学 二次方程式 定数の範囲について

    x^2+ax+3a=0 (1) x^2-ax+a^2-1=0 (2) 二つの二次方程式がともに実数解をもつように定数aの値を求めよ。 (1) 判別式D≧0を使う。 a^2-12a≧0 a≦0 、 12≦a (2) 同じく判別式D≧0を使う。 -3a^2+4≧0 a≦-(2√3)/3 、 (2√3)/3≦a 私の答え a≦0 、 (2√3)/3≦a となったのですが、答えは -(2√3)/3≦a≦0 のようです。 私はどこで間違ったのでしょうか? 調べて考えた結果、D≧0ではなく、どこかでD≦0となる部分があるように思えました。 ですが、どこでなるのかもわからないし、なぜD≦0になるのかもわかりません。 実数解を持つようにいわれてるのに、答えに負の範囲があるのも疑問です。(私の間違った答えにも0≧aがあるのですが、なぜなんでしょうか。)

  • 二次方程式の解について。

     二次方程式が実数の範囲で解を持つか、または複素数の範囲で解を持つかは、二次方程式の解の公式の「判別式」で判断することができますよね。  そこで、この判別式を使って、二次方程式の解が実根になる確率と虚根になる確率と、どっちが大きいのか考えてみました。  まず、簡単にするために二次方程式  ax^2+bx+c=0  の両辺をaでわって、新しくできる係数をp,qとします。そうしてできた二次方程式の判別式は  p^2-4q  となりますよね。この判別式が0に等しいとして、この式を変形していきます…  p^2-4q=0  4=p^2/q  つまり数直線で考えると、p^2/qが丁度4になったとき二次方程式は一つの解しか持たないことになります(重根でしたか?)。同様に考えると(-∞,4)の範囲で二次方程式は虚根を、(4,∞)の範囲で二次方程式は実根をもつはずです。  そう考えると、虚根を持つ範囲の方が4つ分広いので確率が高いとおもったのですが、どうなるのでしょうか?  それとも、私の考え方がどこか間違っていたのでしょうか?

  • 二次方程式

    k>1のとき、 次の二次方程式の実数解の個数を求めよ。 1) x^2+2x+k=0 2)x^2-(k+1)x+1=0 判別式がどういう条件の時で 求めるんですか? 解き方教えてください!

  • 二次方程式について

    二次方程式について x=2-√3i が二次方程式 x~2+px+q=0 の1つの解であるとき 実数p,qの値 という問題で 自分は x-2=-√3i にして両辺平方し、 x~2-4x+7=0 という式を出して係数を比較しました。 この方法では、この先、別の問題を解いていった際に 何か不都合なことがおきてきますか? 模範解答では x=2-√3i を x~2+px+q=0 に代入し、 2p+q+1=0 と p+4=0 の連立方程式から解いています。 こちらの方が良い点はあるのでしょうか?

  • 二次方程式の解の存在範囲を解の公式で解こうとしているのですが解けません

    二次方程式の解の存在範囲を解の公式で解こうとしているのですが解けませんどうしてでしょうか? 問題 Xについての二次方程式X^2+2(A-1)X+A^2-3A-1=0が次のような解をもつための定数Aの範囲を求めよ (1)2つの解(重解を含む)がともに1より大きい を解の公式の小さいほうの解√の前にマイナスが付いているほうが1より大きいと考えて式をたてて解こうとしたのですが、一応答えは出たのですが全く違っていました。回答を見て解き方はりかいできたのですが、なぜ自分の解の公式で解いた方法では答えが出ないのかが分りません教えてください。