• ベストアンサー

高次方程式

実数係数の方程式kx^2-(k+3)x-1=0が虚数解a±biを持つとする。このとき、kの値の範囲は□であり、特に解が純虚数となる場合のkの値は□である。 また、A=a^2+b^2のとりうる値の範囲は□である。 この2次方程式の判別式をDとすると、条件よりD<0 を解いて-9<k<-1 解が純虚数となるときk+3=0を解いてk=-3 までは解いたのですがA=a^2+b^2のとりうる値の範囲が分かりません。 ちなみに慶応大学の入試問題です。

質問者が選んだベストアンサー

  • ベストアンサー
  • postro
  • ベストアンサー率43% (156/357)
回答No.1

二つの虚数解 a+bi と a-bi をかけると (a+bi)(a-bi)=a^2+b^2 なので、解と係数の関係から A=a^2+b^2=-1/k -9<k<-1 ⇔ 9>-k>1 ⇔ 1/9<-1/k<1 ゆえに 1/9<A<1

shaq
質問者

お礼

ありがとうございました。助かりました。 その発想は出てきませんでした。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 緊)2次方程式、高次方程式

    緊)2次方程式、高次方程式 1番、 2次方程式x^2-ax+2a+5=0が虚数解をもつような実数aの値の範囲を求めなさい。 2番、 2次方程式2x^2+kx-k-1=0が実数解をもつような実数kの値の範囲を求めなさい。 上の問題がわかりません;; 回答お願いします!!!

  • 高次方程式

    3次方程式(x-a)(x^2+bx+c)=0(a,b,cは実数の定数)の3つの解のうち、実数解と1つの虚数解の和が10/(1+3i)である。 (1)10/(1+3i)をp+qiの形に表せ。(p,qは実数) (2)a=2のとき、b,cの値を求めよ。 (3)3つの解の平方の和が4となるようなaの値を求めよ。 (1)は分母のiを消して1-3i (2)はa=2を代入して複素数の相当、解と係数の関係でb=2,c=10と答えを求めました が、(3)が分からないので教えてください。

  • 数IIの問題を教えてください

    有理数係数の方程式では a+b√m が解のとき、a-b√m も解であると習ったのですが、これは無理数係数の方程式では成り立たないのでしょうか。 もう1つ、実数係数の方程式では a+bi が解のとき、 a-bi も解であると習ったのですが、虚数係数の方程式では成り立たないのでしょうか。

  • 相反方程式の問題を教えてください

    相反方程式の問題の解き方を教えてください。「k を実数の定数とする。x の方程式 x^5 + kx^4 + 3kx^3 + 3kx^2 + kx + 1 = 0 ……①とする。方程式①は k の値に関係のない解x=−1をもつ。この方程式が実数解をただ 1 つだけもつような k の値の範囲を求めよ。」

  • 連立方程式

    次の連立方程式が2組の相異なる実数解をもつとき,kの値の範囲求める問題で x-y=k (x^2)+xy+(y^2)=4 で x-y=kを(1) (x^2)+xy+(y^2)=4を(2)とすると (1)よりy=x-kを(3)として (2)に代入して計算すると 3(x^2)-3kx+(k^2)ー4=0となりこれを(4)とすると これから 判別式をDとすると求められますが 参考書に (4)の実数解に対して(3)よりyの実数解がただ1つ定まることにより(4)が相異なる2つの実数解をもつkの値の範囲を求めればいいと書いてあるのですが (3)よりyの実数解が1つ定まるというのがよくわかりません 国語のようになってしまってすいません

  • 過去問(二次方程式)教えてください;

    志望校の過去問なんですが、解説を読んでもどうしてもわからないところがあります・・・。 (2)の線(____)を引いてあるところから↓がわかりません。 2a^2-2a-k^2+1≧0  がなりたてば、 求めるkの値の範囲は 1-2(-k^2+1)≦0 になるのでしょうか・・・?? かなり考えたのですがわからなくて・・・お願いします; ※^2は2乗です。 A,b,kを実数とする。Xの二次方程式 X^2-2(a-1)x-b=0・・・・・A X^2-2kx-b+a^2=0・・・・・B について、次の問いに答えよ。 (1)方程式Aが実数の解を持つようなa,bの関係式を求め、その表す領域をab平面状に図示せよ。 答え:b≧-(a-1)^2 (2)方程式Bが実数の解を持つ時には、方程式Aも必ず実数の解を持つようになる定数kの値の範囲を求めよ。 答え:Bが実数解を持つための必要十分条件は k^2-(-b+a^2)≧0  つまりb≧a^2-k^2 である。 いま、方程式Bが実数解を持つ時、方程式Aが必ず実数解をもつための必要十分条件は、任意のaに対して a^2-k^2≧-(a-1)^2 つまり2a^2-2a-k^2+1≧0  がなりたつことである。 _________________↓ したがって求めるkの値の範囲は 1-2(-k^2+1)≦0 つまり2k^2-1≦0 ∴-√2/2≦k≦√2/2・・・答え

  • 数学II 2次方程式の解の判別

    高校1年生です 次の授業の予習をしていたら わからないところがあったので教えてください(2問あります) 問1 2次方程式 x^2-3x+2k=0 が虚数解をもつような定数kの値の範囲を求めよ。 問2 2次方程式 2x^2-2kx+k^2-8=0 が異なる2つの実数解をもつような 定数kの値の範囲を求めよ。 いろいろと分かりにくいですが、早めの回答お願いします><

  • 高次方程式

    xの3次式P(x)=x^3-3ax^2+(2a^2+a)x+bがあり、P(2a)=0を満たしている。 ただし、a、bは実数の定数とする。 (1) bをaを用いて表せ。 (2) 方程式P(x)=0のすべての解が実数であるとき、aのとり得る値の範囲を求めよ。 (3) 方程式P(x)=0が重解をもつとき、aの値を求めよ。また、そのときのP(x)=0の解をすべて求めよ。 解法が(1)からわからないです(・_・;) 回答、よろしくお願いします_(._.)_

  • 高次方程式

    xの3次式P(x)=x^3-3ax^2+(2a^2+a)x+bがあり、P(2a)=0を満たしている。 ただし、a、bは実数の定数とする。 (1) bをaを用いて表せ。 (2) 方程式P(x)=0のすべての解が実数であるとき、aのとり得る値の範囲を求めよ。 (3) 方程式P(x)=0が重解をもつとき、aの値を求めよ。また、そのときのP(x)=0の解をすべて求めよ。 解法が(1)からわからなくて困ってます。 回答、よろしくお願いします。

  • 【高次方程式】

    【高次方程式】 四次方程式、X^4+aX^3-X^2+1=0について考える。ただし、aは実数とする。 (1)X=X+1/Xとすると、Xのとり得る値の範囲を求めよ。ただし、Xは0でない実数とする。 (2)上の四次方程式が二個の正の解をもつとき、aの値の範囲を求めよ。重解は含む。 (3)上の四次方程式が重解をもつときのaの値とその重解を求めよ。 (1)番からつまづいてます…不等式が与えられていないのに、範囲が出るのか疑問です… よろしくお願いします。

このQ&Aのポイント
  • パソコン1台増設の場合、ESETセキュリティソフトウェアに加入する必要があるのか疑問です。
  • 現在は1台の古いパソコンにESETに加入しており、新たに購入したパソコンも同じアドレスに設定していますが、2台目のパソコンもESETに加入する必要があるのでしょうか。
  • 現在はウイルスバスターの体験版を利用していますが、ESETにも加入するべきか迷っています。
回答を見る