• ベストアンサー

連続固有値の疑問 (集合の濃度の点で)

ヒルベルト空間が稠密ということは、状態ベクトルの全体がなす集合の濃度が 加算無限(X0) と思います。 それなら、固有空間⊆ヒルベルト空間ですから、固有ベクトルの集合の濃度も、高々 X0 したがって、連続固有値のなす集合も、高々 X0  ということは、連続固有値の集合の濃度は、連続(X1)  じゃないことになります。 これって、連続固有値の定義と矛盾しませんか? 関連質問: http://okwave.jp/qa/q7856953.html

質問者が選んだベストアンサー

  • ベストアンサー
  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.2

その本が手元にないので「中間値で代表させる方法」がどういう方法であるか分かりませんが、 いずれにせよ異なる連続固有値に対応する"固有ベクトル"が必ずしも直交しないようになっているのだと思います。そうすると「固有ベクトルの集合」が、一次独立(?)であるという事が言えなくなりませんか?

morimot703
質問者

お礼

すいません。 そもそも、ヒルベルト空間の濃度がX0 というのが、僕の思い込みでした。 (可分と可算無限をゴッチャにしていました) お手間をとらせてすみません。 もっと、勉強します。

その他の回答 (1)

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

連続固有値の定義をきちんと覚えていませんが、 連続固有値に対応する"固有ベクトル"は、ヒルベルト空間の元ではないですよね?

morimot703
質問者

補足

はい、もちろん、そうです。 状態が連続固有値をとっている場合、そのままでは、ヒルベルト空間に入らないのは知っています。 この疑問は、清水明「新版 量子論の基礎」p72にある「中間値で代表させる方法」で、 無理やりヒルベルト空間(可算無限)に入れた場合の疑問です。 前提を抜かしていて、すみません。

関連するQ&A

  • 連続固有値がなす集合の濃度は、X0ですかX1ですか

    物理の質問ですが、数学的に厳密な 回答が頂きたいので、ここで質問します。 ヒルベルト空間が稠密ということは、濃度が X0 と聞きました。 それなら、固有空間⊆ヒルベルト空間ですから、連続固有値のなす集合も、高々 X0  連続固有値は、連続 X1  じゃないことになります。 正確なところは、どうなのでしょうか?

  • リッジド・ヒルベルト空間の濃度は?

    ヒルベルト空間は稠密で、濃度は、X0 と思います。 では、ヒルベルト空間より広い、リッジド・ヒルベルト空間の濃度は、X1 なのでしょうか? 広さと濃度は、関係ないのでしょうか?

  • Hilbert空間って?

     Hilbert空間について調べて見たところ「無限次元で稠密なベクトル空間」と書いてありました。  いまいちこれの意味が分からないのですが分かりやすく教えてもらえないでしょうか?お願いします。

  • 対角化の問題で(固有値、固有ベクトル)

    固有空間がこんな感じになった場合、固有ベクトルはどうなるんでしょうか? ┌1 0 -1┐┌x1┐  ┌0┐ │-1 0 1││x2│=│0│・・・☆ └0  0 0┘└x3┘ └0┘ この固有空間の次元2と固有値の重複度2は一致しているんで対角化は可能なんですが、 ☆から固有ベクトルって2つ求まるんですか? ☆からわかるのってx1=x3だけで、x2に関する関係が何も出てこないんで困ってます・・・ どなたかご教授お願いします。

  • 無限集合の連続体濃度のよりも大きな濃度?

    http://ufcpp.net/study/set/cardinality.html#carginality 上記のサイトを眺めておりましたところ、下記の記述に出会いました。 ===引用=== 余談になりますが、 この記号 ‭א は、 ヘブライ文字の1文字目で、ギリシャ文字のα、ローマンアルファベットの a の元になった文字です。 無限基数の中で小さいものから順に、 ‭א0 , ‭א1 , ‭א2 , ・・・ と表します。 昔は、 無限基数を小さいものから順に、 ヘブライ文字の第 n 文字目で表していました (aleph, beth, gimel, daleth, ・・・)が、 読めないし、写植の上でもなかなか表示できないので、 アレフの右下に添字を付ける今の表記法になりました。 ===引用終わり=== 恥ずかしながら、無限集合の濃度の事を聞いて以来、無限集合の濃度は下限が ‭א0で上限がא1なのかと勝手に思っておりました。 ところが、上述のように、 ‭א0 , ‭א1 , ‭א2 , ・・・ ということでありますと、俄然 ‭ ‭‭א2の濃度を持つ無限集合に興味が湧いてまいりました。 連続体濃度よりも濃度が大きい無限集合とはどのような集合でしょうか? 数学の素人なものですから、直観的に理解できそうな実例を一個・二個、お示し頂けるとありがたいです。

  • 集合、濃度の問題について教えてください。

     (1)は解決できました。(2)、(3)の考え方と解法がつかめません。よろしくお願いします。                                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (2)について、0^(♯X)は、問題文の定義より、♯(Φ^X)と書き表せます。 ただ、∮;X→Φという写像の全射かつ単射を示すにはどうすればよいでしょうか? また、どのような答えにいきつくのでしょうか? (3)については、0しか含まない集合Zから0しか含まない集合Wという写像kを考えて、全単射がわかるという形で大丈夫でしょうか? ※(1)は以下のようになりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射が存在すればいい。  Φが全単射で示された。

  • 集合と濃度の問題のやり方を教えてください。

                               問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (1)を、以下のように途中までやりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射であればいい。   そこで、(Y₁)^(X₁)∍h、(Y₂)^(X₂)∍iとして、hとiを用いて、どのようにして全単射を示せばよいか教えてください。お願いします。   ※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹ (2)、(3)についての解き方も併せてお願いいたします。よろしくお願いします。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 行列(固有値と固有ベクトル) (1)固有値が√の固有ベクトル

    数学の行列の固有値と固有ベクトルの問題ですが、 (1  3) (2 -1) の固有値と固有ベクトルを求めたいのですが d(λ-1  -3) e(-2  λ+1) t (λ-1)(λ+1)-(-3)(-2)=0 λ^2 -1-6=0 λ^2 -7=0 λ=±√7 と固有値が出ると思うのですが、固有ベクトルを求める時、λ=√7の時、 (λ-1  -3)(x1) (0) (-2  λ+1)(x2)=(0)のλに√7を代入すると、 (√7 -1    -3)(x1) (0) (-2    √7 +1)(x2)=(0) になって、 固有ベクトルをどう求めるのかがわかりません。 √以外だと、左上を1にして求めていけばいいと思うのですが・・・

  • 有限集合を無限に直積した集合の濃度は?

    有限集合Aがあったとして、A×A×A×・・・と加算無限回直積させたら濃度はどうなりますか? 直感では加算無限個になると思うのですが、証明する方法が思いつかないので教えてください もし言葉や記号に間違いがあったら教えてください、補足します