• 締切済み
  • すぐに回答を!

有限集合を無限に直積した集合の濃度は?

有限集合Aがあったとして、A×A×A×・・・と加算無限回直積させたら濃度はどうなりますか? 直感では加算無限個になると思うのですが、証明する方法が思いつかないので教えてください もし言葉や記号に間違いがあったら教えてください、補足します

noname#215832
noname#215832

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数489
  • ありがとう数3

みんなの回答

  • 回答No.3
noname#221368
noname#221368

 Aが可算無限集合だったとして、Aの有限個nの直積の濃度α0^n(アレフ0のn乗)は、確かに可算無限になります。ここにα0(アレフ0)は、可算無限の濃度を表すとします。  たぶんここから、個数nの有限集合Aの可算無限個の直積の濃度n^α0も可算無限だと直感的に感じたのだと思いますが、無限集合論は直感に反する世界だと思った方が安全です(^^;)。  無限集合論の一般的定理として、集合Aの濃度(個数)をβとすれば、   β<2^β     (1) が成り立ちます(βが有限の場合も含めて)。2^βは、Aに含まれる全ての部分集合の数だからです。これも直感に反するのですが、2を任意有限のnに取り換えても同様に、   β<2^β=n^β   (2) となります。  例えばn=10,β=α0とすると、A^α0は、0~9の数字を動く可算無限個の窓を持つ、スロットルマシーンが表示する数値と同じだけの数があります。その窓の一番左の窓の隣に「0.」と印刷されてれば、そのスロットルマシーンが表示する数値のパターン全部は、0~1にある実数全てと同じだよね?、という発想です。  実数の集合Rの濃度をc(連続無限)とすれば、集合としての実数区間[0,1]の濃度を|[0,1]|として、   |[0,1]|=c    (3) がやはり無限集合論から導かれます。(1),(2),(3)をあわせれば、有限集合Aの濃度を|A|=n(n≠1)として、   α0<|A^α0|=n^α0=2^α0=c が連続無限濃度の集合論における「定義」になります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

2^Aがべき集合だとは聞いたことがあるのですが、指数のように扱えるのは目からうろこでした 無限には常識が通じないこととともに肝に銘じておきます 回答ありがとうございました

関連するQ&A

  • 有限集合の定義って? {1,2,…}は有限集合?

    無限の公理は ∃A;[(φ∈A)∧((¬(x∈A))∨(x∪{x}∈A))] というものなので 集合Aが無限集合の定義は「(φ∈A)∧(¬(x∈A)∨(x∪{x}∈A)」ですよね。 すると、有限集合の定義は無限集合ではないもの 即ち Aが有限集合であるとは「¬[(φ∈A)∧(¬(x∈A)∨(x∪{x}∈A)]」 と言う風に書けると思います。 ¬[(φ∈A)∧(¬(x∈A)∨(x∪{x}∈A)]は ¬(φ∈A) ∨ ¬(¬(x∈A)∨(x∪{x}∈A))と書け、 ¬(φ∈A) ∨ ((x∈A)∧¬(x∪{x}∈A)) したがって、 (Aはφを含まない) ∨ (x∈A)∧(Aはx∪{x}を含まない) となってしまい、自然数全体の集合から0を差し引いたN\{0}という集合 {φ∪{φ},(φ∪{φ})∪{φ∪{φ}},…}は有限集合となってしまいますよね。 (∵この集合はφを含んでいないので) でもこれを有限集合とは到底思えませんよね。 一体何処から間違っているのでしょうか?

  • 集合は有限集合と無限集合だけですか?

    有限集合の元の数を考えるとき、 「いかなる有限集合よりも元の数が多い有限集合は存在しない」------(A) ことがわかります。一番大きな基数の有限集合が存在しないと言い換えても良いですね。 ところがここに無限集合の概念を導入すると 「いかなる基数の有限集合よりも大きい集合として無限集合がある」---(A’) ここで「大きい」とは二つの集合の元を対応させて行くと、「大きい」方の元が余ることを言います。 ここでは、“超有限集合”=無限集合という関係が成り立ちます。 さて、公理的集合論の公理により、無限集合Rから常にPower(R)が作れるので、 「いかなる無限集合よりも濃度の数が多い無限集合は存在しない」------(B) が成立しました。 一番大きな濃度の無限集合が存在しないと言い換えても良いですね。 ここで、有限、無限に続く第三の概念として、“超無限集合”=寿限無集合(仮名)という概念を導入します。 すると、(A)に対して(A’)が成り立ったように、(B)に対して(B’)が成り立ちます。 「いかなる濃度の無限集合よりも大きい集合として寿限無集合がある」---(B’) 質問1:このような寿限無集合はZFC公理系で無矛盾に定義できますか? 質問2:集合の種類は有限と無限の二種類でしたが、第三の概念を導入すると、無限集合では成り立たないが寿限無集合の世界だけで成り立つ定理も発見できると思うのですが、このような概念の拡張をした数学者はいましたか? 質問3:有限と無限以外に第三の概念を導入することが無意味であると立証できますか?

  • 集合の濃度

    すみません 以下の2題を教えて頂ければ嬉しいです。 ネットの海を彷徨ってみたのですが よくわからなくて… 1. Aを無限集合、Bを要素の数が2以上の有限集合とするとき、AからBへの写像 全体の集合Map(A, B)の濃度は真に大きいことを示せ。 2. 開区間(-1, 1)の可算個の直積(-1, 1)×(-1, 1)×…は(-1,1)と 濃度が等しい。このことを証明しろ。

  • 回答No.2

Aの元が1個しかなければ、直積も元は1個ですよね。 2個以上あれば、例えば10個のときを考えると、直積の元と0から1までの実数は1対1に対応するので、回答No1さんの言うとおり、濃度は実数の濃度と同じになります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

Aの元が1個の場合を忘れていました 回答ありがとうございます

  • 回答No.1

有限集合の元の数を |A| とすると、A×A×… の元は、[0,1) の実数の |A| 進法表示  0 . a1 a2 … aN … と1対1に対応付けられるので A×A×… の濃度は実数 [0,1) と同じ א だと思うのですが…。 > もし言葉や記号に間違いがあったら ただの変換間違いとは思いますが「加算無限」ではなくて「可算無限」です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

仰るとおり可算の間違いです 回答も含めありがとうございます

関連するQ&A

  • 「有限集合の部分集合は有限集合」の証明

    有限集合Xの部分集合Aは有限集合であることの証明がわかりません。 X;集合とします X⊇A とします。 とあるテキストによると,Aが有限集合であるとは, __∀F∈P(P(X))[F;A上帰納的 ⇒ A∈F] との事です。 ここで,Xの冪集合の冪集合P(P(X))∋FがA上帰納的であるとは, __φ∈F∧∀C∈F∀x∈A[C∪{x}∈F] であると事,とされています。 この定義に従って, _X;有限集合 ⇒ A;有限集合 を証明したいのですが,証明がさっぱり分かりません。 是非とも証明を御教え下さい。宜しくお願い致します。

  • 集合の対等や濃度の問題が分かりません。

    二問あります。 1. 任意の集合A、Bに対し、|A-B|=|B-A|ならば、|A|=|B|であることを示せ。 2. 有限集合A、Bに対して、|A|=m |B|=n のとき、AからBへの写像全体の集合の濃度を求めよ。 この二問です。 問1に関しては直感的なイメージも出来、ベン図からも成立しそうなのですが、証明の書き方がわかりません。 問2に関しては問題文が先ず理解できないです。「写像全体の集合の濃度」の意味が良く分かりません。自分でなんとなくのイメージで出した答えは m+n-mn ですが、合っている気がしません。 解説お願いいたします。

  • 有理数集合の濃度は非可算?!

    有理数集合の濃度は非可算?! 有理数集合Qの濃度は可算ですが、以下のように考えたところQ(の部分集合)が非可算無限集合になってしまいました。 どこが誤りかご教授願います。 正の有理数は素数のベキを用いて 2^α×3^β×…(α,β,…∈Z) で一意的に表される。 素数の個数は可算無限個なので Q+とZの可算無限個の直積が一対一対応する。 このときZも可算無限集合なので、可算無限集合の可算無限直積で非可算無限集合になる。 よってQ+は非可算無限集合である。

  • 述語論理におけるコンパクト性 いくらでも大きい有限

     述語論理のコンパクト性より  「論理式の集合△は、いくらでも大きな有限集合を議論領域とするモデルによって充足可能ならば、△は無限集合を議論領域とするモデルによって充足可能である」 というものが、出てきますが、 そもそも、このいくらでも大きい有限集合と無限集合とは異なるものなのでしょうか(同じ意味ならば上の定理は何もいってないことになりますよね)。無限集合の定義というのがZFCの無限公理からのものなら帰納的に定義されているものなので、それならいくらでも大きい有限(k→k+1をいえる)というのと同じなのではないですかね・・・。  また、上の証明では Anを「すくなくともn個のものがある」 たとえばA2は「∃x1∃x2(x1≠x2)」などとして △∪{A1,A2,A3,A4,A5・・・An・・・} を考えるわけですが・・・の部分はこのままでは無限の論理式を含んだ形になっています、がこれも無限の論理式をそのまま考えることはできないので「無限個の論理式とはどういう意味か」に相当する(おそらくメタ的な)定義があると思うのですが、それはそういったものでしょうか。もしくはそういう定義がないとすると、どう考えればいいのでしょうか。  質問としては、集合のレベルでの無限といくらでも大きい有限とは異なるものなのかということと、論理式の数においてその数が無限とはどういうことを指しているのかということです。  コンパクト性などはモデルと論理式の両方にまたがるメタ的定理なので、その内容に現れる無限という言葉は(「集合における無限」、「論理式の数における無限」として)それぞれの体系での意味としてとらえる必要があるにも関わらず日常語の意味(限りがないというラフな使い方)にひっぱられていることが私の混乱の原因としてあると思うのですが、この分野に明るい方いらっしゃいましたらご回答ください。よろしくお願いします。

  • 2つの可算無限集合においてその直積は可算無限集合である

    2つの可算無限集合においてその直積は可算無限集合であるということ{f(i,j)=1/2(i+j-1)(i+j-2)+j}を数列、または格子を使って証明するにはどうしたらよいか教えてください。

  • 群の位数と濃度

    群の位数と濃度の関係を教えて下さい。 ちなみに自分が考えた結果は 群Gの位数を|G|、濃度をcardGとするとき Gは有限集合⇔|G|=cardG=(Gの元の個数) Gは無限集合⇔|G|=∞⇔cardG≧cardN (ただしNは自然数全体の集合)

  • σ-集合体について

    σ-集合体について (1)Ωは無限集合であるとする。 A={A⊂Ω:AまたはA^cが有限集合か空集合} この集合族Aは集合体であるがσ-集合体ではないことを示せ。 (2)Ωが有限集合のとき、その部分集合族Aが集合体ならばσ-集合体せあることを示せ。 (3)A,FはΩの部分集合族でA⊂Fとする。また、 A'={A⊂Ω:A^c?A} とする。Fが集合体であればA'⊂Fであることを示せ。 (4) (3)によってA'⊂σ(A)が示されるが、さらにσ(A')=σ(A)を示せ。 この問題が分かりません。 定義や定理は理解できるのですが、活用できません。 解答お願いします。

  • 組み合わせの全体と部分集合の全体は等しいか?

    「組み合わせの全体」と「有限集合の部分集合の全体」は等しいと感じますが,この事に関する「証明」または「定理」は存在するでしょうか? ご存じの方,教えて下さい. 以下が質問の内容の詳細です. 正の整数を,1, 2, 3, ....., n-1, n とします.この n個の正の整数の組み合せ(重複は許さない)の総数 N は, N=Σ[r=1→n] n!/(r!(n-r)!)= =n!/(1!(n-1)!) + n!/(2!(n-2)!) + n!/(3!(n-3)!) +・・・+ n!/((n-1)!(n-(n-1))!) + n!/(n!(n-n)!) =(2^n)-1 ですから, N=(2^n)-1 です. そして,組み合せの全体そのものは, (1),(2),・・・,(n-1),(n), (1,2),(1,3),・・・, (2,3),(2,4),・・・, (1,2,3),(1,2,4),・・・, (2,3,4),(2,3,5),・・・, (1,2,3,4),(1,2,3,5),・・・, (2,3,4,5),(2,3,4,6),・・・, ・・・・・, (1,2,3,4,・・・,n-1,n) となります. 次に,有限集合を S = {1, 2, 3, ....., n-1, n} とします. n は正の整数です.S の部分集合(真部分集合でない,かつ,空集合は除く)の全体は, {1},{2},・・・,{n-1},{n}, {1,2},{1,3},・・・, {2,3},{2,4},・・・, {1,2,3},{1,2,4},・・・, {2,3,4},{2,3,5},・・・, {1,2,3,4},{1,2,3,5},・・・, {2,3,4,5},{2,3,4,6},・・・, ・・・・・, {1,2,3,4,・・・,n-1,n} となります. これらの S の部分集合の全体は,集合の元の構成が組み合せの全体と等しいですか? 分かる方,教えて下さい.お願いします.

  • 部分空間 有限無限集合 基底

    集合 U ⊂R2min を U ={(x y)|x > y,x ∈Rmin, y ∈R}∪{(ε ε)} で定義する. そのとき次の問いに答えよ. (1) U がR^2 min の部分空間であることを示せ. (2) U が有限集合からなる基底を持たないことを示せ. (3) U は無限集合を許しても基底を持たないことを示せ.

  • 濃度について。

    無限集合の濃度をアレフ(n)と書きます。 (1) アレフ(0)<アレフ(1)<アレフ(2)< ・・・ (2) アレフ(n)<アレフ(k)<アレフ(n+1) kの存在はZFでは肯定も否定もできない。 数学基礎論はおろか対角線論法も1度理解出来たと思った瞬間があっただけで今は図を見ていても頭痛するだけで全く理解できません。 質問です。 ○不等号(<)の使用法は普通の演算3<4とは相違していると思いますがどうなのでしょうか。 ○アレフ(0)は代表として自然数の濃度なのでアレフ(-1)は考慮しなくて良い、集合そのものが存在しないという事で良いでしょうか。 ○有限集合の濃度=アレフ0とやると何か変なので濃度という用語は無限集合だけに適用されるということでしょうか。 みっつも質問がありますが知っている人は知っていて知らない人は覚えたいので宜しく御願い致します。