- ベストアンサー
- すぐに回答を!
確率統計の問題が分かりません
この問題が分かりません途中経過が有ると助かりますお願いします。 問題5 関数 f (x,y) =⎧c : x^2 + y^2 ≤1 ⎩0:1<x^2 +y^2 が確率密度関数となるようにcの値を定めよ。 (10点) この立体がどんな形をしているのかを考える(柱になる)。 問題6. 離散変数 x,yに対する確率関数が f (x,y)である。 A = ∑∑xf (x,y)、B=∑∑yf(x,y)、C=∑∑x^2 f(x,y)、D=∑∑y^2 f(x,y)、E =∑∑xyf(x,y)とする時、x,yの共分散σxyを求めよ。(10点) 離散変数と連続変数の違いは∑ か ∫ かの違い。 連続変数の共分散の求め方の式の ∫ を∑ に置き換えてみる。
- akaheru0228
- お礼率61% (8/13)
- 数学・算数
- 回答数1
- ありがとう数1
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- ham3536
- ベストアンサー率53% (8/15)
問題5 確率密度関数であるためには正規化されている(全区間を積分したら1になる)必要があるので ∫f (x,y)dxdy=cπ=1 よりc=1/π 立体で考えるなら, この立体は底面積π,高さcの円柱なので体積はcπ. 確率密度関数であるためには正規化されている(立体の体積が1になる)必要があるので以下省略です. 問題6 σxy=E{(x-A)(y-B)} =E{xy-Bx-Ay+AB} =E{xy}-BE{x}-AE{y}+ABE{1} =E-BA-AB+AB =E-AB 期待値演算のE{・}と定数のE =∑∑xyf(x,y)がごっちゃで分かりにくくてすみません.
関連するQ&A
- 確率統計の問題です!
連続型確率変数Xの確率密度関数が f(x)= a-x (0<x<a) , 0 (その他) であるとき、次の問いに答えよ。 1. aを求めよ 2. Xの期待値と分散を求めよ 3. Y=X^2とするとき、Yの確率密度関数を求めよ 1. ∫0→a f(x)dx=1 と 0<x<a からa=√a と求めることができました。 2. E(X)=∫0→√2 xf(x)dx から√2/3 E(X^2)=∫0→√2 x^2f(x)dx から1/3より V(X)=E(X^2)-{E(X)}^2=1/9 と求めることができました。 3. どうやって求めるかわかりません。E(X^2)を使って求めるのでしょうか?
- 締切済み
- 数学・算数
- 確率・統計の問題です
以下の問題の解答をお願いします。 連続確率変数Xの累積分布関数はFx(x) = P{X≦x}で与えられる。区間[0, 1]で定義された、二つの独立な確率変数X1, X2の累積分布関数Fx1(x), Fx2(x)が図で与えられるとき、以下の問いに答えよ。 Y=X1+X2とおくと、Yの累積分布関数Fy(y)はX1,X2の結合密度関数f12(x1, x2)を用いて Fy(y) = ∫[-∞→∞] ∫[-∞→y-x1] f12(x1, x2)dx2dx1 で与えられる。このことを利用してYの確率密度関数fy(y)を求め図示せよ。
- ベストアンサー
- 数学・算数
- 確率統計の問題(幾何分布)
下の問題で答えをみても答えに至る道筋が理解できずに困っています。考え方を教えてください。どうも、確率変数(特に離散型)を足すという考え方が良くわかっていないようです。実際に計算で2つの確率変数の和,差,積.商を計算するといったことはできるのですが、確率変数の和というものがもっている意味を理解できていないような気がします。よろしくお願い致します。 問題. 確率変数Xは幾何分布 Ge(p)に従うとする. いまX_1, X_2, ..., X_nをGe(p)に従う母集団からの大きさ n の標本変量とする. このとき, Y=X_1+X_2+...+X_n の確率関数 P(Y=y) (y=0,1,2,...)を求めよ. 答え. yはn回成功を得るまでの失敗の数であるからYの確率関数は P(Y=y)=(y+n-1 C y) (1-p)^y p^n
- 締切済み
- 数学・算数
- 確率密度を求める問題(基本的・・・)
確率の勉強を始めたばかりで、基本的なことがわかってません。 確率変数Xの密度関数が、f(x)={3x^2,(0<x<1) 0,(その他)} であるとき、Y=1-X^2の密度関数を求めよ という問題を出されたのですが、イメージが湧かないので離散型に置きかえて 自分なりに考えてみました。以下の考え方でいいのでしょうか。それともピントが ずれてるのでしょうか。また、実際の答えはどうなるのでしょうか? f(x)dxは、各階級における発生確率を求める関数なので、離散型っぽく 書くと下のようになる。そして、Yは、1-X^2であるから、Xが一様に起こる 確率変数だとしたら3列目のようになるが、実際はXの発生確率はf(x)dxで あるから、1-X^2で求まる値にf(x)dxを乗じなくてはならない。 これを最後に、全体が100%として補正した値が1-X^2の確率密度(的)となる。 X f(x)dx Y=1-X^2 f(x)dx*Y p 0 0.0% 100.0% 0.0% 0.0% 0.1 0.3% 99.0% 0.3% 0.8% 0.2 1.2% 96.0% 1.2% 2.9% 0.3 2.7% 91.0% 2.5% 6.2% 0.4 4.8% 84.0% 4.0% 10.2% 0.5 7.5% 75.0% 5.6% 14.2% 0.6 10.8% 64.0% 6.9% 17.5% 0.7 14.7% 51.0% 7.5% 19.0% 0.8 19.2% 19.0% 4.6% 11.7% 1 30.0% 0.0% 0.0% 0.0%
- ベストアンサー
- 数学・算数
- 確率・統計についての質問です。
確率・統計についての質問です。 3題、質問したい問題があります。 1題でも分かる問題があれば、解答して頂けると幸いです。 1. 確率変数Xの確率密度をf(x)、平均をμx、分散をσx^2とする。この時、Y=3X+9の関係にある確率変数Yの確率密度g(y)、平均μy、分散σy^2を求めよ。 2. A君のペナルティーキックの成功率は40%である。A君が5回連続してペナルティーキックを蹴る時、成功回数の期待値と分散を求めよ。 3. 毎日、鯛が平均3尾売れる魚屋がある。客が買いに来たとき、品切れであることが10日に1回の割合でしか起こらないようにするには、毎朝最低何尾仕入れておけば良いか求めよ。(その日のうちに売れなかった鯛は、翌日売ることはない。)
- 締切済み
- 数学・算数
- 確率・統計についての質問です。
確率・統計についての質問です。 3題、質問したい問題があります。 1題でも分かる問題があれば、解答して頂けると幸いです。 1. 確率変数Xの確率密度をf(x)、平均をμx、分散をσx^2とする。この時、Y=3X+9の関係にある確率変数Yの確率密度g(y)、平均μy、分散σy^2を求めよ。 2. A君のペナルティーキックの成功率は40%である。A君が5回連続してペナルティーキックを蹴る時、成功回数の期待値と分散を求めよ。 3. 毎日、鯛が平均3尾売れる魚屋がある。客が買いに来たとき、品切れであることが10日に1回の割合でしか起こらないようにするには、毎朝最低何尾仕入れておけば良いか求めよ。(その日のうちに売れなかった鯛は、翌日売ることはない。) よろしくお願い致します。
- 締切済み
- 数学・算数
- 確率・統計の問題です。
以下の問題の解答をお願いします。 確率変数X,Yの同時確率密度関数 fx,y(x,y) が次式で与えられている。但し、cは定数とする。これについて、以下の問いに答えよ。 fx,y(x,y) = { ce^(-x-y), 0≦x≦y 0, その他 } (1)cの値を求めよ。 (2)Yの周辺確率密度関数fy(y)を求めよ。 (3)XとYが独立であるか否かを、理由と共に答えよ。
- ベストアンサー
- 数学・算数
- 確率変数の分布の問題について質問です
確率変数の分布の問題について質問です 私は高校生で、経済学に興味があり、統計学を自習しておりますがわからない問題があるので質問させていただきます 1、ポアソン分布(f(x)=(e^-λ*λ^χ)/χ! χ=0,1、2・・・)の積率母関数がe^{λ(e^t-1)}となることを示し平均と分散をもとめよ 2(1)連続確率変数χが (f=(χ)e^(-χ) χ>0のとき ) (=0 xは0以下のとき ) なる密度関数をもつ時y=-2x+5で定義されるyの密度関数を求めよ (2)χが正規分布N(μ、σ^2)に従う時χ=logeyなるy すなわちy=e^χは次の密度関数を持つことを証明せよ。 (f(y)={e^{-(logy-μ)^2/yσ√(2π)}}/{yσ√(2π)} y>0のとき ( =0その他のとき またyの平均はexp(μ+(σ^2)/2) 分散はexp(2μ+σ^2)[exp(σ^2)-1]となることを導け
- 締切済み
- 数学・算数
質問者からのお礼
とてもわかりやすい解答ありがとうございます。