• 締切済み
  • 困ってます

確率の質問

自分で考えた確率の問題なのですが、 解けずに困っています 「問題」 同じ連続確率分布f(x)に従う確率変数X1,X2,X3 がある。 確率変数Yを Y=Xi ( X1<X2<X3→Xi=X2, X3<X1<X2→Xi=X1, ... 真ん中の値をXiとする) とおくとき 確率変数Yの従う確率分布の平均と分散を求めなさい

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • ur2c
  • ベストアンサー率63% (264/416)

↓ 順序統計量の一般論です。平均と分散だけでなく、分布全体がわかります。

参考URL:
http://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E7%B5%B1%E8%A8%88%E9%87%8F

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 確率変数の和の平均値と分散と確率分布

    確率の問題でどうしても解けない物があります。どなたか解き方を教えて貰えませんでしょうか。お願いします。 問題) 確率変数 Xi(i=1,2,…,N) は互いに独立であるが, それぞれ平均値i (E(Xi)=i) のポアソン分布に従う. この確率変数の和 Y= (N Σ i=1) Xi の平均値と分散を, Nの関数として求めよ. さらに,Yの確率分布 P(Y=n) を求めよ.

  • 確率統計

    ◆ 確率分布とパラメータ:指数分布 λ>0 確率・確率密度関数P(X=x)またはPx(x):{Px(x)=λe^(-λx) (x>0) , Px(x)=0 (その他)} 特性関数 φx(jt):(1-jt/λ)^(-1) 平均値 E[X]:1/λ 分散 Var[X]:1/(λ^2) ◆ 確率分布とパラメータ:幾何分布 0<p<1 確率・確率密度関数P(X=x)またはPx(x):Px(X=x)=pq^x, x=1,2,・・・ q=1-p 特性関数 φx(jt):p/(1-qe^(jt)) 平均値 E[X]:q/p 分散 Var[X]:q/(p^2) ◆ 確率分布とパラメータ:負の2項分布 r=1,2,・・・, 0<p<1 確率・確率密度関数P(X=x)またはPx(x):Px(X=x)=【r+x-1,x】(p^r)(q^x) , x=0,1,2,・・・ q=1-p 特性関数 φx(jt):{p/1-qe^(jt)}^r 平均値 E[X]:rq/p 分散 Var[X]:rq/p^2 これらの確率分布について、(1)連続確率変数と離散確率変数のどちらか、(2)全体の確率P(-∞<X<∞)=1となることを計算せよ、(3)これらの確率変数について、平均E(X)と分散 V(x)が求められることを計算せよ。 ってところがわかりません。よろしくお願いします。

  • 統計学 確率分布の問題

    こんにちは。統計学を勉強している者ですが、 次の問題が解けずに困っています。  n個の確率変数 X1, X2, … Xnが、  次の母集団分布からのランダム標本であるとする。  P(X=1)=p , P(X=0)=1-p=q  このとき、Y=X1+X2+…+Xnの確率分布を求めよ。  また、Yの平均と分散を求めよ。 という問題です。 Yの確率分布は、P(X=1)が選ばれる回数をkとすると nCk * p^k * q^(n-k) になると思うのですが…。 確率分布と言われると、どう答えてよいのかわかりません。 平均と分散は、この確率分布の答えをもとにして 出せばいいのですか? kやnをどう駆使して算出すればよいのでしょう? 答えの分かる方、詳しく解説してもらえると助かります。

  • ベルヌーイ分布における独立な確率変数とは?

    統計学の問題についてです。 【問題】 次式の確率関数f(x)をもつベルヌーイ分布に従う、 互いに独立なn個の確率変数Xi(i=1,2,…,n)がある。 以下の問に答えよ。   f(x)={p(x=1),1-p(x=0)}ただし0≦p≦1 確率変数Xiの期待値と分散を求めよ。 問題を解こうとしたのですが、確率変数Xiがよくわかっていません。 ベルヌーイ分布はB(1,p)で、取りうる確率変数は0か1の2つであるのに 「互いに独立なn個の確率変数Xi(i=1,2,…,n)」について考えるというのは どういう意味なのでしょうか? 概念的なものが全然理解できていませんので、その辺りも踏まえて 回答をしていただけたらと思っています。よろしくお願いいたします。

  • 確率の問題が解けません。

    次の3問が分かりません。何方か解ける方がいらっしゃったら解説をよろしくお願いします。 [1] 確率密度関数f(x)が f(x) ={c(1 - x ²)} (lxl≤1のとき)                  ={ 0 } (lxl>1のとき) と与えられている。  1)規格化定数cの値を求めよ。  2)分布関数F(x)を求めよ。 [2]確率変数X₁、X₂、X₃が互いに独立で、標準正規分布N(0,1)に従うとき、確率      Pr{0 ≤ (X₁+X₂+X₃)/ 3 ≤ 0.5} を求めよ。 [3]確率変数X、Yは独立で、それぞれ自由度4のχ²分布、自由度6のχ²分布に従うとき、             Pr( X ≥λY )=0.05 となるλを求めよ。

  • 確率分布

    大学の授業でこんな問題が出ました。 確率変数X1,X2はお互いに独立であり、それぞれが平均1/s1.1/s2の指数分布に従う。 X=min(X1,X2)と定義するとき、確率変数Xが従う確率分布を求めよ。

  • 確率密度関数に関する問題。

    超基礎問題なのですが理解できません… ご教授よろしくお願いします。 (1)確率変数Xの密度関数が f(x)=1/2,-1<x<1 0,その他の場合 であるとする。 このときXの平均、分散を求めよ。 (2)Xは標準正規分布N(0,1)に従う確率変数であるとする。下の問いに答えよ。 (a)Xの確率密度関数を書け。 (b)X^2の確率密度関数を求めよ。 (3)X,Yは独立な確率変数であり、Xはパラメータλ1のポアソン分布Po(λ1)に従い また、Yはパラメータλ2のポアソン分布Po(λ2)に従うとする。 このときX+Yの確率分布を求めよ。

  • 積率母関数と確率分布

    いつもお世話になっております. このたびは積率母関数に関しする以下の問題について質問させていただきます. 問.積率母関数が次の式である確率変数Xを想定する.ψ(t)=(3e^t+e^-t)/4 このとき,Xの平均と分散はいくらか.また,Xの確率分布も求めなさい. このような問題で,平均は1/2,分散は3/4であると計算することが出来ました. しかし,確率分布をどのようにして求めればよいのかが分かりません. 何卒ご教示よろしくお願い致します.

  • 数学の質問です

    問本文 X1,X2,...Xn は一様分布U(0,1)に従うn個の無作 為標本とする。 それらの値がt以下の標本の個数を♯{Xi≦t}と 表すとき、確率変数X = ♯{Xi≦t}はどのような 分布に従うか? また経験分布関数 Fn(t)=♯{Xi≦ t}/n の平均と分散を求めよ。 を教えてください!

  • 確率E[aX+b]=a[X]+bの証明について

    基本的な部分ですが、すっきりせず困っています。 確率変数Xに対し、新しい確率変数aX+bを考えたとき、 E[a*X+b]=Σ{(a*x_i+b)*f(x_i)} ------------------(*) =Σ{(a*x_i)*f(x_i)}+Σ{b*f(x_i)} =a*Σ{(x_i)*f(x_i)}+b*Σ{f(x_i)} =a*E[X]+b*1 =a*E[X]+b という証明がよく教科書に載っていると思います。 しかし、確率変数Xが確率分布f(x)に従うとき、 E[X]=Σ{(x_i)*f(x_i)}=x_1*f(x_1)+x_2*f(x_2)+…+x_n*f(x_n) ですから、確率変数がXからaX+bになると、掛け合わせる確率分布もf(aX+b)でなければならず、結局、(*)式は E[a*X+b]=Σ{(a*x_i+b)*f(a*x_i+b)} のようになると思うのですが・・・。 でもそれだとE[aX+b]=a[X]+bにならないですよね・・・。何か勘違いをしているでしょうか?もしわかる方がおられましたら、どうぞご助力下さい。