• ベストアンサー
  • すぐに回答を!

解析学/逆三角関数の証明・問題

誰かわかる方、下の問題に答えてください!一つでも構いません。 1微分せずに証明 Arctan(x/√1-x^2)=Arcsinx (-1<x<1) Arctan(1/x)=(1)(π/2)-Arctanx (x>0) (2)-(π/2)-Arctanx (x<0) 2次の値を求める Arctan(3/4)+Arctan(1/7) tan(Arcsin(4/5)+Arccos(12/13)) 3多項式または分数式で表す cos(Arcsinx)sin(2Arcsinx) tan(3Arctanx)

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数2047
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • ninoue
  • ベストアンサー率52% (1288/2437)

先ずはArcsin(x) の定義式を書いてみて下さい。 y=Arcsin(x); ==> x=sin(y); それから左辺を見られたら気付く事があると思うのですが。 Arctan(x/√1-x^2)  但し括弧は正しく書いて下さい。 次の式の筈です。 ==>Arctan(x/√(1-x^2)) この式に x=sin(y) を代入して計算していって下さい。 Arctan(3/4)+Arctan(1/7) この値を求める場合も、上と同じように考えていくと計算できます。 α=Arctan(3/4), β=Arctan(1/7); tan(α+β) 等を求めてください。 その他も同様な考え方で求める事が出来ます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 逆三角関数

    tan(Arcsin4/5+Arccos12/13) cos(ArcsinX)sin(2ArcsinX) tan(3ArctanX) の計算方法がわかりません。おすすめの参考書などありましたら教えてもらいたいです。

  • 逆関数の問題です。

    (1) x>0 とすると arctan 1/x + arctan x = π/2 を示せ。 (2) arccos x = sin 4/5 をみたすxをもとめよ。 という問題なのですが、解けませんでした。 どなたか解答とその導入過程を教えてください。 わたしの考えたことを少し載せます。間違っていたら申し訳ありません。 (1) acrtan 1/x =α, arctan x = βとすると、求めるものは α+β  arctan 1/x =α より tan α = 1/x (-π/2 <α< π/2) arctan x = β より tan β = x (-π/2 <α< π/2) よって tan(α+β)の定義域は -π<α+β<π …(ここからどうするのかがわかりません) (2) この問題も(1)と同様に arccos x = α, arcsin 4/5 = β として cosα、sinβの値は出せますが、どうすればよいのか訳がわかりません。 ※arcsin θ =sin^-1 θ

  • 逆三角関数の計算&証明問題

    arccos(sin(-π/5)) arctan(1/(tan3π/5)) sin(arctanx)=x/√(1+x^2)の証明 の解き方がわかりません。どなたか教えてください。よろしくお願いします。

  • 逆三角関数の値

    ちょっと式がややこしいですが、 sin(arccos√3/2)+cos(arctan((-1)/√3))+arcsin((-1)/√2) を計算すると、 sin(π/6)+cos(-π/6)-π/4 となり、 結果が 1/2+(-√3/2)-π/4 だと思ったのですが、 解答は、(√3-1)/2 となっていました。 どこが間違っているのでしょうか。

  • 逆三角関数の方程式

    Arcsinx+2Arcsin1/4=π/2 という問題なのですが、解いても解答と合いません。 自分なりに立てた途中式は Arcsinx=Arcsin1-2Arcsin1/4 α=Arcsin1、β=2Arcsin1/4とおくと sinα=1 2sinβ=1/4 sinβ=1/8 Arcsinx=α-β  x=sin(α-β) x=sinαcosβ-cosαsinβ =1×√63-0×1/8 =√63 ですが実際の解答は 7/8 です。 どこから間違えたのかわかりません・・。解き方をご教授お願いします。

  • 逆三角関数の計算

    次の計算ができません。 tan(arctan15)= arcsin(cos9π/5)= 上の式では、15が1/√3のような値だとわかるのですが…。

  • 数学 逆三角関数

    sin(arccos√3/2)+cos(arctan-1/√3)+(arcsin-1/√2)の答えをお願いします。途中式も があると嬉しいです。ちなみに、解答は√3/2-1/2です

  • 逆三角関数の問題です。

    次の式を簡単にせよ。 arctan(1/2)+arctan(1/3) arcsinx+arccosx という問題で、解法には、それぞれtan(与式),sin(与式)とあり、 答えはπ/4,π/2となっているのですが、 どのようにこの答えが導き出されたのかが分かりません。 どなたか解説していただけないでしょうか。よろしくお願いします。

  • 逆三角関数の微分

    次の関数を微分せよ (1)y=(1/3)arctanx/3 (2)y=arcsin(cosx) という問題です。 (1)は arctanx=1/(x^2+1) を利用して y'=   1      1      ̄  *  ̄ ̄ ̄ ̄ ̄ ̄  * (x/3)'      3    (x/3)^2+1 =   1   ̄ ̄ ̄ ̄ ̄    (x)^2+9 となって、答えが出たのですか、 (2)を同じ要領で解くと y'=     1     ̄ ̄ ̄ ̄ ̄ ̄ ̄ * (-sinx)    √(1-cos^2x)  =  -sinx    ̄ ̄ ̄ ̄ ̄    √(sin^2x) で止まってしまいました。 略解によると 1(-π/2<x<0),-1(0<x<π/2)となって整数値をとるのですが、自分の回答ではそうなりそうもありません。 どなたか教えてください。

  • 三角関数

    1) cos[arccos(x) - arcsin(x)] 2) sin[arctan(X) - arccos(x)] の解き方を教えてください。