• ベストアンサー
  • 困ってます

逆三角関数の微分

次の関数を微分せよ (1)y=(1/3)arctanx/3 (2)y=arcsin(cosx) という問題です。 (1)は arctanx=1/(x^2+1) を利用して y'=   1      1      ̄  *  ̄ ̄ ̄ ̄ ̄ ̄  * (x/3)'      3    (x/3)^2+1 =   1   ̄ ̄ ̄ ̄ ̄    (x)^2+9 となって、答えが出たのですか、 (2)を同じ要領で解くと y'=     1     ̄ ̄ ̄ ̄ ̄ ̄ ̄ * (-sinx)    √(1-cos^2x)  =  -sinx    ̄ ̄ ̄ ̄ ̄    √(sin^2x) で止まってしまいました。 略解によると 1(-π/2<x<0),-1(0<x<π/2)となって整数値をとるのですが、自分の回答ではそうなりそうもありません。 どなたか教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数792
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

ーーー arctanx=∫(1/((x^2)+1))dx y=(1/3)arctan(x/3) y'=(1/3)[(1/(((x/3)^2)+1)](x/3)' =1/((x^2)+9) なるほど。 -------- arcsin(x)=∫(((1-(x^2))^(-1/2))dx y=arcsin(cosx) y'=[(1-((cosx)^2))^(-1/2)](-sinx) =[1/|(sinx)|](-sinx) =(-sinx)/|(sinx)| arcsin(X)の 定義域は、ー1≦X≦+1 値域は、ーπ/2≦arcsin(X)≦π/2 ただし、X=ー1、+1では微分係数を持たない。 X=(cosx) y=arcsin(cosx) xは、nπ以外では微分係数をもつ。 xの定義域に限定は不要のはずですが、 この問題では、ーπ/2<x<π/2 としてあるらしく、 ーπ/2<x<0、   y'=(ーsinx)/(ーsinx)=1 0<x<π/2、   y'=(ーsinx)/(sinx)=ー1 ーーー

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 詳しい解説ありがとうございました。助かりました。

関連するQ&A

  • 三角関数の微分

    三角関数の微分が解けません。 三角関数の法則を利用して答えは纏めた形になるのですが、上手く纏める方法が思いつきません。 1. y=sin^2xcos^3(2x) y'=2sinxcosx*cos^3(2x)+sin^2x*(-6)cos^2xsinx Ans:y'=sin2xcos^2(2x)*{1-8sin^2(x)} 2sinxcosxを2倍角の公式を利用したりして纏めましたが答えにたどり着けません。 また、 2. y=sinx/1+tan^2(x) y'=cosx{1+tan^2(x)}-sinx*2tanx{1/cos^2(x)} Ans:y'=cosx{1-3sin^2(x)} 纏め方について助言お願いします。

  • 微分 三角関数

    y=cosx/sinxを微分すると y'={(cosx)'sinx-cosx(sinx)'}/(sinx^2) ={-sinxsinx-cosxcosx}/sin^2x ={-(sin^2x+cos^2x)}/sin^2x =-1/sin^2x で ={-(sin^2x+cos^2x)}/sin^2xからどうして =-1/sin^2xになるんですか? 教えてください

  • 三角関数の方程式がわかりません.教えてください.

    三角関数の方程式がわかりません.教えてください. 角度は弧度法を用いるとして 「sin2x+sinx=0を満たすxの値を求めよ.」 という問題がわかりません 倍角の公式により,sin2x=2sinx*cosxなので 与式⇒2sinx*cosx+sinx=0   ⇒sinx(2cosx+1)=0 よって,sinx=0またはcosx=-1/2を満たすxを求めると (πは整数とする)x=nπ,2π/3+2nπ,4π/3+2nπ だと思ったのですが, 答えには (2nπ+1)π,2π/3+2nπ,4π/3+2nπ とありました. なぜx=nπ(動径が0またはπのところ)ではなく(2nπ+1)π(動径がπのところ)なのですか?

その他の回答 (2)

  • 回答No.2
  • debut
  • ベストアンサー率56% (913/1604)

√(sin^2x)は |sinx| ですよね。 -π/2<x<0では-sinx 0<x<π/2では sinx とはずせないですか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 √(sin^2x)=|sinx|は思いつきませんでした。

  • 回答No.1
noname#69788

dx/dy=1/(dy/dx) 逆関数の微分の公式をつかってください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。 参考にさせていただきます。

関連するQ&A

  • 三角関数

    問(1)方程式を解く 0≦x<2πの時 cos2x=cosx cos2x=cosx cos2x-cosx=0 cos(2x-x)=0 cosx=0 ∴x=0,π/2,3π/2 だと思ったのですが、答えが違います。どこが間違っているのでしょうか? 問(2)不等式を解く 3√3sinx+cos2x-4<0 これはどうやっていいか全くわかりません。先ずsinかcosかどちらかにそろえると思うのですが… 問(3)最大値、最小値を求める。 0≦x<πの時 y=cos^2x+sinx y=cos^2x+sinx =1-sin^2x+sinx (sinx=tとおき) =-t^2+t-1 =-(t^2-t)-1 =-(t-1/2)^2+5/4 と最大値が5/4とはわかるのですが最小値はどうやって求めたらいいのでしょうか?与式に0orπを代入するのですか? 問(4)最大値、最小値を求める 0≦x<π/2の時 y=cos^2-4cosxsinx-3sin^2x これは因数分解できないと思うのですが、どうすればいいのでしょう。-4cosxsinxのところがどうしても整理できないのですが(sin,cosどちらかにそろえること) どれか一つでもいいのでよろしくお願いします。

  • 合成関数の微分法で質問です

    合成関数の微分法で質問です (sinX)'=cosXという公式がありますよね そこで (sin2x)を微分すると 2sin2xになるのですが、 公式的に、 (sinx)'=cosxならば なぜ(sin2x)'=cos2x  こうならないのでしょうか

  • 解析学/逆三角関数の証明・問題

    誰かわかる方、下の問題に答えてください!一つでも構いません。 1微分せずに証明 Arctan(x/√1-x^2)=Arcsinx (-1<x<1) Arctan(1/x)=(1)(π/2)-Arctanx (x>0) (2)-(π/2)-Arctanx (x<0) 2次の値を求める Arctan(3/4)+Arctan(1/7) tan(Arcsin(4/5)+Arccos(12/13)) 3多項式または分数式で表す cos(Arcsinx)sin(2Arcsinx) tan(3Arctanx)

  • 微分

    次の関数を微分しなさい。 1.y=2x√(x^2+1) 2.y=x/√(1-x^2) 3.y=√(1-x)/√(1+x) 4.y=x^2 sin(x+1) 5.y=sinx cos^2(x) 6.y=sin√(x^2-x+1) 7.y=sin^4(x) cos4x 8.y=√(1+cos^2(x)) 9.y=cosx/(1-sinx) 10.y=(tanx+(1/tanx)) 簡単な説明でも結構です。(○○の公式を使って・・みたいな) 非難や愚痴だけはごめんです。

  • 三角関数の微分の方法

    今数学3に入って、三角関数の微分で困っています。 教科書の三角関数の微分の公式では、 (1)  (sin(x))’=cos(x) (2)  (cos(x))’=-sin(x) (3)  (tan(x))’=1/{cos(x)}^2 と書いてあります。 ですが、(1)を用いた(2)の証明のところで (cos(x))’={sin(x+π/2)}’=cos(x+π/2)・(x+π/2)’=-sin(x) となっています。 また、例題では、 (1)y=sin(2x-1) を微分せよ  y’=cos(2x-1)・(2x-1)’=cos(2x-1)・2=2cos(2x-1) となっています。 なぜ、公式の証明のところでは、cos(x+π/2)に(x+π/2)’をかけるのでしょうか? なぜ、例題でも cos(2x-1)に(2x-1)’をかけるのでしょうか? はじめの公式から読み取れず困っています。 どうか返答お願いします。

  • 三角関数の微分の問題

    三角関数の微分の問題で、下の問題がわかりません。 次の関数を微分せよ。 y={cos2x}^3 答えは、 y’=-3cos(2x)・sin(4x) となっているのですが、僕がやるとなぜか y’=-6{cos(2x)}^2・sin(2x) となってしまいます。 途中式も書きますので、どこが間違っているのかも教えてください。 y={cos(2x)}^3 y’=3{cos(2x)}^2・{cos(2x)}’   =3{cos(2x)}^2・{-sin(2x)・2} =-6{cos(2x)}^2・sin(2x) 返答お願いします。

  • 三角関数の積分

    1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx  cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。

  • 三角関数

    先程は失礼しました。 y=3(sinx)^2+4sinxcosx-(cosx)^2 が y=3* (1-cos2x)/2 + 2sin2x - (1+cos2x)/2 になる過程がよく分かりません。 sin2x-cos2x=√2sin(2x- π/4)  となる過程もよく分かりません。 sin2x+cos2X  だったらどうなるのでしょうか。

  • 三角関数の問題について

    0≦x<2πでsinx≧sin(x-π/3) を解く過程でsinx-(sinx×cosπ/3-cosx×sinπ/3)≧0から1/2sinx+√3/2cosx≧0になる解き方が分かりません。分かりやすく教えてくださいおねがいします!

  • sinxとcosxの微分

    非常に初歩的な質問で情けありませんが、 以下のようにすると、cosxの微分が-sinxであることを導けません。 (sinx)'=cosx (cosx)'={sin(π/2-x)}' =(sinX)' ## X = π/2 - x とおく =cosX =cos(π/2-x) =cosπ/2×cosx + sinπ/2×sinx =sinx !!!! この導き方のどこに問題があるのでしょうか? よろしければご指摘のほどお願いします。