• ベストアンサー
  • すぐに回答を!

逆関数の問題です。

(1) x>0 とすると arctan 1/x + arctan x = π/2 を示せ。 (2) arccos x = sin 4/5 をみたすxをもとめよ。 という問題なのですが、解けませんでした。 どなたか解答とその導入過程を教えてください。 わたしの考えたことを少し載せます。間違っていたら申し訳ありません。 (1) acrtan 1/x =α, arctan x = βとすると、求めるものは α+β  arctan 1/x =α より tan α = 1/x (-π/2 <α< π/2) arctan x = β より tan β = x (-π/2 <α< π/2) よって tan(α+β)の定義域は -π<α+β<π …(ここからどうするのかがわかりません) (2) この問題も(1)と同様に arccos x = α, arcsin 4/5 = β として cosα、sinβの値は出せますが、どうすればよいのか訳がわかりません。 ※arcsin θ =sin^-1 θ

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数398
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

(1) acrtan 1/x =α, arctan x = βとすると、求めるものは α+β  arctan 1/x =α より tan α = 1/x (-π/2 <α< π/2) arctan x = β より tan β = x (-π/2 <α< π/2) よって tan(α+β)の定義域は -π<α+β<π …(ここからどうするのかがわかりません) _________________________________________________________________________________ 何を証明しようとしているか、何を計算しようとしているかを よく確認しながら考えを進めたほうがいいですよ。 α+β=π/2 を証明しようとしているのですから sin(α+β)=1 が示せればいいですよね。 #1さんのが本筋かもしれませんが、一つ一つ値を出してしまうこともできます。 tanα=sinα/cosα=1/xなら xsinα=cosαですから、 sinα=1/√(x^2+1) cosα=x/√(x^2+1) 同様に sinβ=x/√(x^2+1)=cosα cosβ=1/√(x^2+1)=sinα sin(α+β)=sinαcosβ+cosαsinβ=sinαsinα+cosαcosα=1 (2) > (1)と同様に arccos x = α, arcsin 4/5 = β ??両方が等しいのですからarccos x = arcsin 4/5 = αで十分でしょう。 sinα=4/5 cosα=±3/5 xや角度に特に範囲が設定されていないならx=±3/5だと思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 逆三角関数の値

    ちょっと式がややこしいですが、 sin(arccos√3/2)+cos(arctan((-1)/√3))+arcsin((-1)/√2) を計算すると、 sin(π/6)+cos(-π/6)-π/4 となり、 結果が 1/2+(-√3/2)-π/4 だと思ったのですが、 解答は、(√3-1)/2 となっていました。 どこが間違っているのでしょうか。

  • 解析学/逆三角関数の証明・問題

    誰かわかる方、下の問題に答えてください!一つでも構いません。 1微分せずに証明 Arctan(x/√1-x^2)=Arcsinx (-1<x<1) Arctan(1/x)=(1)(π/2)-Arctanx (x>0) (2)-(π/2)-Arctanx (x<0) 2次の値を求める Arctan(3/4)+Arctan(1/7) tan(Arcsin(4/5)+Arccos(12/13)) 3多項式または分数式で表す cos(Arcsinx)sin(2Arcsinx) tan(3Arctanx)

  • 数学 逆三角関数

    sin(arccos√3/2)+cos(arctan-1/√3)+(arcsin-1/√2)の答えをお願いします。途中式も があると嬉しいです。ちなみに、解答は√3/2-1/2です

その他の回答 (1)

  • 回答No.1

(1) tan( (π/2) - A ) = 1 / tan(A) ってこと. (2) 問題はあってますか? その問題だと,x=cos(sin(5/4))です 定義域・値域は都合のよいように処理します

共感・感謝の気持ちを伝えよう!

質問者からの補足

もうしわけありません。タイプミスです。 (2)の問題はarccos x = arcsin 4/5 でした。

関連するQ&A

  • 三角関数

    1) cos[arccos(x) - arcsin(x)] 2) sin[arctan(X) - arccos(x)] の解き方を教えてください。

  • 逆三角関数の計算

    次の計算ができません。 tan(arctan15)= arcsin(cos9π/5)= 上の式では、15が1/√3のような値だとわかるのですが…。

  • tanの逆関数を対数で表す問題

    例えばarcsinの逆関数場合 ω = arcsinz とおけば、 z = sinω であり、オイラーの公式より、 z = {e^(iω) - e^(-iω)}/2i … (1) これを変形して {e^(iω)}^2 - 2iz{e^(iω)} - 1 = 0 この方程式を解いて e^(iω) = iz ± √(1-z^2) 指数関数と対数関数の関係より、 ω = arcsinz = 1/i*log{iz ± √(1-z^2)} と表すというもので、 arccosの場合もω = arccoszとすれば z = {e^(iω) + e^(-iω)}/2 … (2) これを用いて同様に計算を行うと ω = arccosz = 1/i*log{z ± i√(1-z^2)} となると参考書に書いてありました。 ここでarctanに関してなのですが、三角関数の公式 tan = sin/cos … (3) (3)に(1), (2)にを代入して、 z = tanω = [{e^(iω) - e^(-iω)}/2i] / [{e^(iω) + e^(-iω)}/2]     = (1/i) * [{e^(iω) - e^(-iω)} / {e^(iω) + e^(-iω)}] … (4) となると思うのですが、 この(4)式を用いてarcsinω、arccosωと同様にarctanωを求めたいのですがうまくいきません。 (4)式をe^(iω)について解くにはどのように変形すればいいのでしょうか。 もしくはこの方法自体が間違っているのでしょうか。 長々とすみません。 どなたか分かる方がいればアドバイスなどよろしくお願いします。

  • 逆三角関数の問題です。

    次の式を簡単にせよ。 arctan(1/2)+arctan(1/3) arcsinx+arccosx という問題で、解法には、それぞれtan(与式),sin(与式)とあり、 答えはπ/4,π/2となっているのですが、 どのようにこの答えが導き出されたのかが分かりません。 どなたか解説していただけないでしょうか。よろしくお願いします。

  • ラプラス逆変換について

    arccot(s/π)の逆変換を求めたいのですが、cot(s/π)=1/tan(s/π) arccot(s/π)=1/arctan(s/π)...(1) =arccos(s/π)/arcsin(s/π)...(2) . ∫{arccos(s/π)/arcsin(s/π)}ds =log{sin(s/π)}...(3) と解いていったのですが行き詰ってしまいました。 この後どのようにすれば解けるのでしょうか。

  • 逆三角関数の方程式

    Arcsinx+2Arcsin1/4=π/2 という問題なのですが、解いても解答と合いません。 自分なりに立てた途中式は Arcsinx=Arcsin1-2Arcsin1/4 α=Arcsin1、β=2Arcsin1/4とおくと sinα=1 2sinβ=1/4 sinβ=1/8 Arcsinx=α-β  x=sin(α-β) x=sinαcosβ-cosαsinβ =1×√63-0×1/8 =√63 ですが実際の解答は 7/8 です。 どこから間違えたのかわかりません・・。解き方をご教授お願いします。

  • 三角関数

    よろしくお願いいたします。 0 <θ<π/2とする。 sinθ-cosθ=1/2のとき、sin2θ=3/4, さてtanθ=? という問題です。 解答は、 2sinθcosθ=3/4の両辺をcosθ^2で割って整理すると 2tanθ=1/cosθ^2=1+tanθ^2であるからX=tanθとおくと、 3X^2-8X+3=0よりX=4±√7・・・※ ここで 0 <θ<π/2かつsinθ-cosθ=1/2>0よりX-1>0であるから、 X=4+√7 ※までは理解できたのですが、そこからしぼりこむところが疑問です。解答はここまでしか書いていないのですが、そんな単純なことなのでしょうか。どうしてX-1>0といえるのでしょうか。 X=4-√7はだいたい4 &#8211; 2.6くらいでしょうか。sinθ-cosθ=√2sin θ(θ-π/4)=1/2など変形してみたのですが、それ以上前に進めませんでした。勉強不足ですが、どなたかアドバイスをお願いいたします。

  • 三角関数の問題を教えてください

    (1):π/2<θ<π,sinθ=1/3のときcosθとtanθの値を求めよ。 (2):π<θ<2π,tanθ=-1/2のときsinθとcosθの値を求めよ。 解説等は結構ですので答のみ教えていただきたいです。 よろしくお願いします。

  • 三角関数の方程式

    y=x+√(3)*sin(x)-cos(x) 0<=x<=2π のときの微分係数が0になるxを求めたい。 y'=1+√(3)*cos(x)+sin(x) y'=0 より  1+√(3)*cos(x)+sin(x)=0 ---(1) (1)を解くのに cos^2(x)+sin^2(x)=1 を使って sin(x)=√(1-co^2(x))を代入して求めたら x=π/2,3π/2,5π/6,7π/6 が得られたのですが、π/2と7π/6は y'が0になりません。 定義域の関係なのかよくわかりません。 なぜ得られたπ/2と7π/6をy'の式に代入したら0にならないか教えて下さい。

  • 三角関数の性質~基本~

    私は今高校1年生なのですが、 学校では既に2年生の勉強が始まりました・・・。 三角関数をやっているのですが、 基本のところでつまずいてしまいました。 問 次の□にあてはまる鋭角を求めよ。 (1)tan9π/14=-tan□ (2)cos(-11π/4)=-sin□ 公式で sin(-θ)=-sinθ cos(-θ)=cosθ tan(-θ)=-tanθ sin(π-θ)=sinθ      cos(π-θ)=-cosθ tan(π-θ)=-tanθ sin(π+θ)=-sinθ cos(π+θ)=-cosθ tan(π+θ)=tanθ  sin(π/2+θ)=cosθ cos(π/2+θ)=-sinθ    tan(π/2+θ)=-1/tanθ sin(π/2-θ)=cosθ cos(π/2-θ)=sinθ tan(π/2-θ)=1/tanθ というのを習ったのですが、 2問ともこれを使って解くのでしょうか。 (1)はtan9π/14=tan(π-5π/14)=-tan5π/14 ではないかと思ったのですが、合っているでしょうか? (2)のほうはあまり自信がないのですが、 cos(-11π/4)=cos(π/2-13π/4)=-sin13π/4 でいいのでしょうか? 考えるうちに よくわからなくなってきてしまいました・・・; よろしければどなたが回答・アドバイス等お願い致します。