• ベストアンサー
  • 困ってます

三角関数

大至急お願いします。数学の問題です Oを原点とする座標平面上に定点A(3,3√3)、動点P(p,q)をとる。 ただし、0≦θ<2πとして、 p=√3cosθ-sinθ q=√3sinθ+cosθ とする。 (1)線分OAの長さは(ア)であり、線分OAとx軸のなす鋭角はπ/(イ)である。 また、 q=(ウ)sin{θ+π/(エ)} と変形でき、同様に p=(ウ)cos{θ+π/(エ)} と変形できる。また、 OP=(オ) である。 (2)線分APの長さが最大になるのは、θ=(カ)/(キ)πのときであり、このとき、線分APの長さは(ク)である。 (3)△OAPが直角三角形になるようなθの値は、全部で(ケ)個ある。 途中式もお願いします

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数200
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • ferien
  • ベストアンサー率64% (697/1085)

訂正です。済みません。以下の記述のところ、3π/4は、すべて4π/3に直して下さい。 計算は合っています。 >OPは、中心が(0,0)半径が2の円周上を動きます。そのような円を描けばいいです。 >線分APの長さが最大になるのは、A,O,Pが一直線上に並んだときです。 >そのとき、OPとx軸とのなす角は4π/3です。 >x座標=2cos(4π/3)=2・(-1/2)=-1 >y座標=2sin(4π/3)=2・(-√3/2)=-√3 >ここで(ア)の式と比べると、θ+π/6=4π/3 だから、θ=7π/6のときAPが最大値を取ります。 よろしくお願いします。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

詳しい回答、ありがとうございます! 本当にわかりやすかったです。 訂正もありがとうございました!

関連するQ&A

  • 三角関数の問題です

    0≦θ<πのとき、y=8√3cos2+6cosθcosθ+2√3sin2θは y=[ア]sin([イ]θ+π/[ウ])+[エ]√[オ]となる。という問題がわかりません。 (半角の2は2乗ということです。ウのところはウ分のπということです。) 2倍角、半角の公式を用いてsin2θ、cos2θの一次式に変形させて解くみたいなのですが、よくわかりません。 三角関数は苦手なので、細かい所まで教えていただけると助かります! 火曜日にみんなの前で解かないといけないので、よろしくお願いします!

  • 三角関数

    0≦α≦πとする。x≧0を満たすすべてのxに対して、不等式 2xsinαcosα-2(√3x+1)cos^2α-√2cosα+√3x+2≧0 が成り立つための条件は sinアα≧√イcosαウαかつ エcos^2α+√オcosα-カ≦0が成り立つことである。 これより、αの値の範囲は キ/クπ≦α≦ケ/コπである。 角がバラバラなので2倍角の公式等で揃えようとしましたが、私には無理でした。どなたか教えて下さい。

  • 三角関数の問題です。

    [1] cos2x=cos3x (1) 2x=ア+2nπ (n=0,±1,±2,・・・) アにあてはまるものを次のうちから選べ。 0→ ±3x 1→ ±3x+π/2 2→ ±3x+π 3→ ±3x+3π/2 したがって、0<x<πの範囲で(1)を満たすxは x=イπ/ウとx=エπ/オの2個存在する。 [2] イπ/ウ=α,エπ/オ=βとし、 |sinα|=a,|cosα|=b,|sinβ|=c,|cosβ|=d とおくと,a~dの大小関係は次のようになる。   カ<キ<ク<ケ カキクケにはa~dのうちから適するものを選べ。 センター試験レベルですが解説つきで教えてくださいいい。 あとやってみた感じの難易度もおねがいします。

その他の回答 (2)

  • 回答No.2
  • ferien
  • ベストアンサー率64% (697/1085)

Oを原点とする座標平面上に定点A(3,3√3)、動点P(p,q)をとる。 ただし、0≦θ<2πとして、 p=√3cosθ-sinθ q=√3sinθ+cosθ とする。 (1)線分OAの長さは(ア)であり、線分OAとx軸のなす鋭角はπ/(イ)である。 また、 q=(ウ)sin{θ+π/(エ)} と変形でき、同様に p=(ウ)cos{θ+π/(エ)} と変形できる。また、 OP=(オ) >である。 OAの長さ=6,線分OAとx軸のなす鋭角はπ/3, q=2sin(θ+π/6),p=cos(θ+π/6) ……(ア) OP=2です。 >(2)線分APの長さが最大になるのは、θ=(カ)/(キ)πのときであり、このとき、線分APの長さは(ク)である。 (1)のことを使ってグラフを描いてみると分かります。 OAは、上の記述通りに描きます。 OPは、中心が(0,0)半径が2の円周上を動きます。そのような円を描けばいいです。 線分APの長さが最大になるのは、A,O,Pが一直線上に並んだときです。 そのとき、OPとx軸とのなす角は3π/4です。 x座標=2cos(3π/4)=2・(-1/2)=-1 y座標=2sin(3π/4)=2・(-√3/2)=-√3 ここで(ア)の式と比べると、θ+π/6=3π/4 だから、θ=7π/6のときAPが最大値を取ります。 AP^2=(3-(-1))^2+(3√3-(-√3))^2=64より AP=8 よって、θ=7π/6のとき、最大のAP=8 …カキク >(3)△OAPが直角三角形になるようなθの値は、全部で(ケ)個ある。 これもグラフから分かります。 △OAPが直角三角形になるのは、円に対してAを通る接線が引ける場合で、 そのとき、接線APと半径OPが直交するので直角三角形になります。 このような接線は2本引けるので、θの値は、全部で(2)個 です。 のようになりました。どうでしょうか?

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • Cupper-2
  • ベストアンサー率29% (1342/4565)

座標(3,3√3) をイメージできれば簡単な問題です。  1:2:√3 この三角形…分かりますか? 正三角形を半分にした形です。 そんなわけで、取りかかりのイメージを添付しますので、 今一度 自身で考えてみましょう。 意外と簡単に解ける部分もありますよね。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ありがとうございます。 自分で(1)はできました (2)からがわかりませんお願いします

関連するQ&A

  • 三角関数について

    質問失礼します。 三角関数が苦手で下の問題が解けません。 やり方など教えてほしいです。 aを正の定数とする。点Oを原点とする座標平面において、中心がOで、半径が1の円と半径が2の円をそれぞれc1、c2とする。θ≧0を満たす実数θに対して、c1上の点をp(cosaθ、sinaθ)、c2上の点をQ(2cos(π-θ/2)、2sin(π-θ/2))とする。 (1)3点O、p、Qがこの順に一直線上にあるような最小のθの値はθ=アπ/イa+ウである。 (2)線分pQの長さの2乗pQ2乗は、エcos((オa+カ)θ/キ)+クである。 (3)θの関数f(θ)=エcos((オa+カ)θ/キ)+クとおき、f(θ)の正の周期のうち最小のものが3πであるとすると、a=ケ/コである。 以上です。 よろしくおねがいします。 長文失礼しました。

  • 三角関数が分かりません(;o;)

    明日 数学で当たるのですが 数学が嫌いなので ぜんぜん わかりません (;o;) そこで よかったら 途中の式も入れて カタカナの部分を求めるのを お願いします! △ABCにおいて、∠B=Θ、∠C=π/2、AB=2sinΘ とする。 このとき l=sinアΘ-cosイΘ+ウ =√エsin (オΘ-π/カ.)+ウ よって、Θが 0<Θ<π/2の範囲で変化するとき Lは Θ=キπ/ クのとき、 最大値ケ+√コをとる 明日までにお願いします!

  • 数II・三角関数

    【問1】x≧0を満たすすべてのxに対して、 不等式xcos^2α+2√3xsinαcosα-(x-4)sin^2α-1>0…(1) が成り立つようなαの値の範囲を求めよ。ただし、0≦α≦π/2とする。 (1)の左辺をxについて整理すると (√3sinアα+cosイα)x+(ウsinα+エ)(オsinα-カ)>0であり、 x≧0を満たすすべてのxについて(1)が成り立つ条件は √3sinアα+cosイα≧0かつ(ウsinα+エ)(オsinα-カ)>0が成り立つことである。 これより、求めるαの値の範囲はπ/キ<α≦クπ/ケコである。 【問2】0≦Θ<2πのとき、y=sin2Θ+2√2sinΘ+2√2cosΘ-4とする。 x=sinΘ+cosΘとおくと、2sinΘcosΘ=x^ア-イであるからy=x^ウ+エ√オx-カである。 ここで、x=√キsin(Θ+π/ク)であるから、xのとりうる値の範囲は-√ケ≦x≦√コである。 したがって、yはΘ=π/サのとき最大値シをとり、Θ=スπ/セのとき、最小値ソタをとる。

  • 三角関数の問題です

    問題がわかりません。教えていただくと助かります。 2cos^2θ-√3 sin2θ-(2a+1)(√3 cosθ-sinθ-1)=0 …(1) を考える。ただし、0≦θ<2π とする。 t=cos (θ+π/6) とおくと 4t^2=アcos^2θ-√イ sin2θ+ ウ であるから。(1)は t^2-(エ+オ/カ)t+ キ/ク = 0 a=3 のとき(1)の解は θ=π/ケ または コ / サ π である。 また、a=シ または スセ のとき(1)は 0≦θ<2π の範囲に3個の解をもつ。 (1)をどう、展開していけばいいのか教えて下さい。 よろしくお願いします。

  • 三角関数

    0<θ<πとして y=cos(πsinθ)sin(πsinθ) ア<sinθ≦イであるから、y>0となるのは、θについて 0<sinθ<ウ/エ が成り立つときである。 したがって、y>0となるのは 0<θ<オ/カπ、キ/クπ<θ<π のときである。 という問題ですが。 ア0 イ1までしか分かりませんでした。 どなたかよろしくお願いします。

  • 三角関数

    三角形ABCはAB=AC=1の二等辺三角形で∠CAB=2θ(0<θ≦π/4)であるとする。点Cから線分ABに垂線を下ろしたときの交点をHとする。 (1)線分BCの長さをsinθを用いて表せ。 (2)三角形CHBに着目し、線分CHの長さをsinθ、cosθを用いて表せ。 (3)線分AHの長さがcos2θと表されることに注意して、cos2θをsinθを用いて表せ。 よろしくお願いします。

  • 三角関数

    正弦:sin 余弦:cos 正接:tan ってどうしてこの記号使うのでしょうか?? そもそも「正弦」とかって訳されたのはなぜですか?? 「正弦」って、明鏡辞典では、「直角三角形のひとつの鋭角について、斜辺と高さの比」って載ってます。 確かに、そぅなんですけど… “数学史”的な回答を待っています。

  • 三角関数の最大・最小の問題がわかりません

    0≦θ<2πのとき、y=sin2θ+√2sinθ+√2cosθ-2とする。 x=sinθ+cosθとおくと、2sinθcosθ=x^2-1であるから y=x^2+√2 x-3である。 ここで、x=√2 sin(θ+π/4)であるから、xのとりうる値の範囲は-√2≦x≦√2である。 ここまではわかりました、何か間違っていたら教えてください。ここからがわかりません。 したがって、yはθ=π/ア のとき、最大値イをとり、 θ=ウπ、エπのとき最小値オをとる。 解法お願いします。

  • 三角関数の問題です。

    実数x、yが11x^2+12xy+6y^2=4を満たす時、 x^2+y^2の最大値と最小値を次のように求める。 xy平面上の原点Oと他の点P(x,y)を結ぶ線分OPの長さをr、 x軸と動径OPのなす角をθとすると、 1/r^2(11x^2+12xy+6y^2)=(ア)cos^2θ+(イウ)sinθcosθ+(エ) =(オ)/(カ)cos2θ+(キ)sin2θ+(クケ)/(コ)=(サシ)/(ス)sin(2θ+α)+(クケ)/(コ)である。 但し、sinα=(セ)/(ソタ)、cosα=(チツ)/(テト)である。 従って、x^2+y^2の最大値は(ナ)、最小値は(ニ)/(ヌネ)である。 まったく手に負えません… 問題の意味が全然わからないのですが どなたかわかりやすく説明していただけませんか?

  • 三角関数&極限

    とりあえず問題を見てください。 半径1の円Oの円周上に定点Aと動点Pがある。PからAにおける接線に垂線PHを下ろす。 Pが円周上をAに限りなく近づけるとき、(AH^2)/PH の極限値を求めよ。 自分の方針としては、 ∠AOP=θとおいて、余弦定理からAPを出す。 接弦定理から、∠HAP=θなので、AH=APcosθ、PH=APsinθ として計算しました。 ところが不定形になり色々変形を試みたのですが、できません。 教えてください。

専門家に質問してみよう