• 締切済み
  • すぐに回答を!

三角関数の問題です。

[1] cos2x=cos3x (1) 2x=ア+2nπ (n=0,±1,±2,・・・) アにあてはまるものを次のうちから選べ。 0→ ±3x 1→ ±3x+π/2 2→ ±3x+π 3→ ±3x+3π/2 したがって、0<x<πの範囲で(1)を満たすxは x=イπ/ウとx=エπ/オの2個存在する。 [2] イπ/ウ=α,エπ/オ=βとし、 |sinα|=a,|cosα|=b,|sinβ|=c,|cosβ|=d とおくと,a~dの大小関係は次のようになる。   カ<キ<ク<ケ カキクケにはa~dのうちから適するものを選べ。 センター試験レベルですが解説つきで教えてくださいいい。 あとやってみた感じの難易度もおねがいします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数101
  • ありがとう数0

みんなの回答

  • 回答No.2

ちょっとお邪魔。σ(・・*)にポイントつけないでね!!!! えっとね、問題のそのままの形で書いてます? >2x=ア+2nπ (n=0,±1,±2,・・・) これだけだと何のことだかわからないよ。 「(1)のとき」 って言うのが入っていると思うけど。 入っていなくても分かればいいんだけど、気がつかなかったら訳が分からなくなるよ~。 こういうの注意ね。センターくらいだと、こういうところで引っかかっていては ちょっとお手上げになりますよ>< 難易度? う~ん、理系なら、解けないと恥ずかしい。 文型さんでも、これはギリギリでも解かないと。 解けないと、平均取れないくらいかもしれないよ。 これは解けて当たり前って所。 マークミスを気にしないといけないところだと思う。 ただ、現役じゃないからね^^; 代数学の非常勤とかだから^^; でもこれはね・・・。あんまり簡単だろうって思うけどなぁ~。 (=^. .^=) m(_ _)m (=^. .^=)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数II・三角関数

    【問1】x≧0を満たすすべてのxに対して、 不等式xcos^2α+2√3xsinαcosα-(x-4)sin^2α-1>0…(1) が成り立つようなαの値の範囲を求めよ。ただし、0≦α≦π/2とする。 (1)の左辺をxについて整理すると (√3sinアα+cosイα)x+(ウsinα+エ)(オsinα-カ)>0であり、 x≧0を満たすすべてのxについて(1)が成り立つ条件は √3sinアα+cosイα≧0かつ(ウsinα+エ)(オsinα-カ)>0が成り立つことである。 これより、求めるαの値の範囲はπ/キ<α≦クπ/ケコである。 【問2】0≦Θ<2πのとき、y=sin2Θ+2√2sinΘ+2√2cosΘ-4とする。 x=sinΘ+cosΘとおくと、2sinΘcosΘ=x^ア-イであるからy=x^ウ+エ√オx-カである。 ここで、x=√キsin(Θ+π/ク)であるから、xのとりうる値の範囲は-√ケ≦x≦√コである。 したがって、yはΘ=π/サのとき最大値シをとり、Θ=スπ/セのとき、最小値ソタをとる。

  • 三角関数

    0≦α≦πとする。x≧0を満たすすべてのxに対して、不等式 2xsinαcosα-2(√3x+1)cos^2α-√2cosα+√3x+2≧0 が成り立つための条件は sinアα≧√イcosαウαかつ エcos^2α+√オcosα-カ≦0が成り立つことである。 これより、αの値の範囲は キ/クπ≦α≦ケ/コπである。 角がバラバラなので2倍角の公式等で揃えようとしましたが、私には無理でした。どなたか教えて下さい。

  • 三角関数が分かりません(;o;)

    明日 数学で当たるのですが 数学が嫌いなので ぜんぜん わかりません (;o;) そこで よかったら 途中の式も入れて カタカナの部分を求めるのを お願いします! △ABCにおいて、∠B=Θ、∠C=π/2、AB=2sinΘ とする。 このとき l=sinアΘ-cosイΘ+ウ =√エsin (オΘ-π/カ.)+ウ よって、Θが 0<Θ<π/2の範囲で変化するとき Lは Θ=キπ/ クのとき、 最大値ケ+√コをとる 明日までにお願いします!

  • 回答No.1
  • OOKIII
  • ベストアンサー率25% (59/229)

0→ ±3x cosθ=cos(-θ),cosθ=cos(θ+360°×n) から イメージは、0,180,360°のところで左右対称 0<x<πだから0<3x<3π 2x=±3x+2nπ +の方 -x=2nπ x=-2nπ除外 -の方 5x=2nπ x=2nπ/5 n=1 x=2π/5=72度 n=2 x=4π/5=144度 これが、x=イπ/ウとx=エπ/オの2個 sinとcosの図(グラフ)を書いて、調べると b<c<d<a cos72<sin144<cos144<sin72

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の問題です

    問題がわかりません。教えていただくと助かります。 2cos^2θ-√3 sin2θ-(2a+1)(√3 cosθ-sinθ-1)=0 …(1) を考える。ただし、0≦θ<2π とする。 t=cos (θ+π/6) とおくと 4t^2=アcos^2θ-√イ sin2θ+ ウ であるから。(1)は t^2-(エ+オ/カ)t+ キ/ク = 0 a=3 のとき(1)の解は θ=π/ケ または コ / サ π である。 また、a=シ または スセ のとき(1)は 0≦θ<2π の範囲に3個の解をもつ。 (1)をどう、展開していけばいいのか教えて下さい。 よろしくお願いします。

  • 三角関数

    0<θ<πとして y=cos(πsinθ)sin(πsinθ) ア<sinθ≦イであるから、y>0となるのは、θについて 0<sinθ<ウ/エ が成り立つときである。 したがって、y>0となるのは 0<θ<オ/カπ、キ/クπ<θ<π のときである。 という問題ですが。 ア0 イ1までしか分かりませんでした。 どなたかよろしくお願いします。

  • 三角関数

    大至急お願いします。数学の問題です Oを原点とする座標平面上に定点A(3,3√3)、動点P(p,q)をとる。 ただし、0≦θ<2πとして、 p=√3cosθ-sinθ q=√3sinθ+cosθ とする。 (1)線分OAの長さは(ア)であり、線分OAとx軸のなす鋭角はπ/(イ)である。 また、 q=(ウ)sin{θ+π/(エ)} と変形でき、同様に p=(ウ)cos{θ+π/(エ)} と変形できる。また、 OP=(オ) である。 (2)線分APの長さが最大になるのは、θ=(カ)/(キ)πのときであり、このとき、線分APの長さは(ク)である。 (3)△OAPが直角三角形になるようなθの値は、全部で(ケ)個ある。 途中式もお願いします

  • 三角関数について

    質問失礼します。 三角関数が苦手で下の問題が解けません。 やり方など教えてほしいです。 aを正の定数とする。点Oを原点とする座標平面において、中心がOで、半径が1の円と半径が2の円をそれぞれc1、c2とする。θ≧0を満たす実数θに対して、c1上の点をp(cosaθ、sinaθ)、c2上の点をQ(2cos(π-θ/2)、2sin(π-θ/2))とする。 (1)3点O、p、Qがこの順に一直線上にあるような最小のθの値はθ=アπ/イa+ウである。 (2)線分pQの長さの2乗pQ2乗は、エcos((オa+カ)θ/キ)+クである。 (3)θの関数f(θ)=エcos((オa+カ)θ/キ)+クとおき、f(θ)の正の周期のうち最小のものが3πであるとすると、a=ケ/コである。 以上です。 よろしくおねがいします。 長文失礼しました。

  • 三角関数の問題です

    0≦θ<πのとき、y=8√3cos2+6cosθcosθ+2√3sin2θは y=[ア]sin([イ]θ+π/[ウ])+[エ]√[オ]となる。という問題がわかりません。 (半角の2は2乗ということです。ウのところはウ分のπということです。) 2倍角、半角の公式を用いてsin2θ、cos2θの一次式に変形させて解くみたいなのですが、よくわかりません。 三角関数は苦手なので、細かい所まで教えていただけると助かります! 火曜日にみんなの前で解かないといけないので、よろしくお願いします!

  • 三角関数の最大・最小の問題がわかりません

    0≦θ<2πのとき、y=sin2θ+√2sinθ+√2cosθ-2とする。 x=sinθ+cosθとおくと、2sinθcosθ=x^2-1であるから y=x^2+√2 x-3である。 ここで、x=√2 sin(θ+π/4)であるから、xのとりうる値の範囲は-√2≦x≦√2である。 ここまではわかりました、何か間違っていたら教えてください。ここからがわかりません。 したがって、yはθ=π/ア のとき、最大値イをとり、 θ=ウπ、エπのとき最小値オをとる。 解法お願いします。

  • 3次関数y=x^3-2ax^2+a^2x (a>0)の0≦x≦1におけ

    3次関数y=x^3-2ax^2+a^2x (a>0)の0≦x≦1における最大値を求めたい。 まず、yはx=(ア)のときに極大値(イ)をとり、x=(ウ)のとき極小値(エ)をとり、さらに(ア)以外にy=(イ)となるようなxの値はx=(オ)である。 そこで、求める最大値をaの関数と考えてM(a)で表すと次のようになる。 a≧(カ)のとき M(a)=(キ) (カ)>a≧(ク)のとき M(a)=(ケ) (ク)>a>0のとき M(a)=(コ) という問題なんですが、(ア)~(オ)までは分かったんですが、 場合わけする部分がどうすれば解答にたどり着くか分かりません。 分かる方解説よろしくお願いします。 解答 (ア)a/3(イ)(4a^3)/27(ウ)a(エ)0(オ)4a/3 (カ)3(キ)a^2-2a+1(ク)3/4(ケ)(4a^3)/27(コ)a^2-2a+1

  • 三角関数の問題です。

    実数x、yが11x^2+12xy+6y^2=4を満たす時、 x^2+y^2の最大値と最小値を次のように求める。 xy平面上の原点Oと他の点P(x,y)を結ぶ線分OPの長さをr、 x軸と動径OPのなす角をθとすると、 1/r^2(11x^2+12xy+6y^2)=(ア)cos^2θ+(イウ)sinθcosθ+(エ) =(オ)/(カ)cos2θ+(キ)sin2θ+(クケ)/(コ)=(サシ)/(ス)sin(2θ+α)+(クケ)/(コ)である。 但し、sinα=(セ)/(ソタ)、cosα=(チツ)/(テト)である。 従って、x^2+y^2の最大値は(ナ)、最小値は(ニ)/(ヌネ)である。 まったく手に負えません… 問題の意味が全然わからないのですが どなたかわかりやすく説明していただけませんか?

  • 三角関数の問題 教えてください!

    sinα+cosβ=√2 cosα+sinβ=-√2 のとき sin(α+β)=(ア) α=(イ)π β=(ウ)π (ただし、0≦α≦2π 0≦β≦2π) この問題が分かりません。アの部分は2であるのは出来たのですが、αとβをそれぞれ求めるのが分かりません。やり方と解答を教えてください。お願いします。

  • 数学IIの問題を教えてください

    数学IIの問題を教えてください f(θ)=4sinθ+2cos2θ g(θ)=3-2/√3cosθを考える (1) g(π/6)=【イ】 (2)f(θ)=【ウ】【ヱ】sin^2θ+【オ】sinθ+【カ】 =【ウ】【ヱ】(sinθ-【キ】/【ク】)^2+【ケ】 と変形でき 0≦θ<2πにおいてf(θ)が最大になる時のθは θ=π/【コ】、【サ】/【シ】π カタカナに入る数字を教えてください

専門家に質問してみよう