• ベストアンサー
  • 困ってます

三角関数について

質問失礼します。 三角関数が苦手で下の問題が解けません。 やり方など教えてほしいです。 aを正の定数とする。点Oを原点とする座標平面において、中心がOで、半径が1の円と半径が2の円をそれぞれc1、c2とする。θ≧0を満たす実数θに対して、c1上の点をp(cosaθ、sinaθ)、c2上の点をQ(2cos(π-θ/2)、2sin(π-θ/2))とする。 (1)3点O、p、Qがこの順に一直線上にあるような最小のθの値はθ=アπ/イa+ウである。 (2)線分pQの長さの2乗pQ2乗は、エcos((オa+カ)θ/キ)+クである。 (3)θの関数f(θ)=エcos((オa+カ)θ/キ)+クとおき、f(θ)の正の周期のうち最小のものが3πであるとすると、a=ケ/コである。 以上です。 よろしくおねがいします。 長文失礼しました。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数375
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • ONEONE
  • ベストアンサー率48% (279/575)

(1) 3点O,P,Qがこの順に一直線上にあるときは、aθとπ-θ/2が2nπ(n:整数)の差を持つので aθ-(π-θ/2)=2nπ 最小のθはn=0のとき (2) 三平方の定理より PQ^2={cos(aθ)-2cos(π-θ/2)}^2^{sin(aθ)-2sin(π-θ/2)}^2 = 5+4cos(aθ+θ/2) (3) 周期が3πなのでθの係数 a+1/2=2/3

共感・感謝の気持ちを伝えよう!

質問者からの補足

解答ありがとうございます^^ とても有り難いです! 補足すみません; (2)の三平方の定理がうまくできないのでよかったら詳しく教えてもらえませんか;?

関連するQ&A

  • 三角関数の問題です

    問題がわかりません。教えていただくと助かります。 2cos^2θ-√3 sin2θ-(2a+1)(√3 cosθ-sinθ-1)=0 …(1) を考える。ただし、0≦θ<2π とする。 t=cos (θ+π/6) とおくと 4t^2=アcos^2θ-√イ sin2θ+ ウ であるから。(1)は t^2-(エ+オ/カ)t+ キ/ク = 0 a=3 のとき(1)の解は θ=π/ケ または コ / サ π である。 また、a=シ または スセ のとき(1)は 0≦θ<2π の範囲に3個の解をもつ。 (1)をどう、展開していけばいいのか教えて下さい。 よろしくお願いします。

  • 三角関数

    0<θ<πとして y=cos(πsinθ)sin(πsinθ) ア<sinθ≦イであるから、y>0となるのは、θについて 0<sinθ<ウ/エ が成り立つときである。 したがって、y>0となるのは 0<θ<オ/カπ、キ/クπ<θ<π のときである。 という問題ですが。 ア0 イ1までしか分かりませんでした。 どなたかよろしくお願いします。

  • 数II・三角関数

    【問1】x≧0を満たすすべてのxに対して、 不等式xcos^2α+2√3xsinαcosα-(x-4)sin^2α-1>0…(1) が成り立つようなαの値の範囲を求めよ。ただし、0≦α≦π/2とする。 (1)の左辺をxについて整理すると (√3sinアα+cosイα)x+(ウsinα+エ)(オsinα-カ)>0であり、 x≧0を満たすすべてのxについて(1)が成り立つ条件は √3sinアα+cosイα≧0かつ(ウsinα+エ)(オsinα-カ)>0が成り立つことである。 これより、求めるαの値の範囲はπ/キ<α≦クπ/ケコである。 【問2】0≦Θ<2πのとき、y=sin2Θ+2√2sinΘ+2√2cosΘ-4とする。 x=sinΘ+cosΘとおくと、2sinΘcosΘ=x^ア-イであるからy=x^ウ+エ√オx-カである。 ここで、x=√キsin(Θ+π/ク)であるから、xのとりうる値の範囲は-√ケ≦x≦√コである。 したがって、yはΘ=π/サのとき最大値シをとり、Θ=スπ/セのとき、最小値ソタをとる。

  • 三角関数

    0≦α≦πとする。x≧0を満たすすべてのxに対して、不等式 2xsinαcosα-2(√3x+1)cos^2α-√2cosα+√3x+2≧0 が成り立つための条件は sinアα≧√イcosαウαかつ エcos^2α+√オcosα-カ≦0が成り立つことである。 これより、αの値の範囲は キ/クπ≦α≦ケ/コπである。 角がバラバラなので2倍角の公式等で揃えようとしましたが、私には無理でした。どなたか教えて下さい。

  • 三角関数の問題です。

    [1] cos2x=cos3x (1) 2x=ア+2nπ (n=0,±1,±2,・・・) アにあてはまるものを次のうちから選べ。 0→ ±3x 1→ ±3x+π/2 2→ ±3x+π 3→ ±3x+3π/2 したがって、0<x<πの範囲で(1)を満たすxは x=イπ/ウとx=エπ/オの2個存在する。 [2] イπ/ウ=α,エπ/オ=βとし、 |sinα|=a,|cosα|=b,|sinβ|=c,|cosβ|=d とおくと,a~dの大小関係は次のようになる。   カ<キ<ク<ケ カキクケにはa~dのうちから適するものを選べ。 センター試験レベルですが解説つきで教えてくださいいい。 あとやってみた感じの難易度もおねがいします。

  • 三角関数が分かりません(;o;)

    明日 数学で当たるのですが 数学が嫌いなので ぜんぜん わかりません (;o;) そこで よかったら 途中の式も入れて カタカナの部分を求めるのを お願いします! △ABCにおいて、∠B=Θ、∠C=π/2、AB=2sinΘ とする。 このとき l=sinアΘ-cosイΘ+ウ =√エsin (オΘ-π/カ.)+ウ よって、Θが 0<Θ<π/2の範囲で変化するとき Lは Θ=キπ/ クのとき、 最大値ケ+√コをとる 明日までにお願いします!

  • 三角関数

    大至急お願いします。数学の問題です Oを原点とする座標平面上に定点A(3,3√3)、動点P(p,q)をとる。 ただし、0≦θ<2πとして、 p=√3cosθ-sinθ q=√3sinθ+cosθ とする。 (1)線分OAの長さは(ア)であり、線分OAとx軸のなす鋭角はπ/(イ)である。 また、 q=(ウ)sin{θ+π/(エ)} と変形でき、同様に p=(ウ)cos{θ+π/(エ)} と変形できる。また、 OP=(オ) である。 (2)線分APの長さが最大になるのは、θ=(カ)/(キ)πのときであり、このとき、線分APの長さは(ク)である。 (3)△OAPが直角三角形になるようなθの値は、全部で(ケ)個ある。 途中式もお願いします

  • 3次関数y=x^3-2ax^2+a^2x (a>0)の0≦x≦1におけ

    3次関数y=x^3-2ax^2+a^2x (a>0)の0≦x≦1における最大値を求めたい。 まず、yはx=(ア)のときに極大値(イ)をとり、x=(ウ)のとき極小値(エ)をとり、さらに(ア)以外にy=(イ)となるようなxの値はx=(オ)である。 そこで、求める最大値をaの関数と考えてM(a)で表すと次のようになる。 a≧(カ)のとき M(a)=(キ) (カ)>a≧(ク)のとき M(a)=(ケ) (ク)>a>0のとき M(a)=(コ) という問題なんですが、(ア)~(オ)までは分かったんですが、 場合わけする部分がどうすれば解答にたどり着くか分かりません。 分かる方解説よろしくお願いします。 解答 (ア)a/3(イ)(4a^3)/27(ウ)a(エ)0(オ)4a/3 (カ)3(キ)a^2-2a+1(ク)3/4(ケ)(4a^3)/27(コ)a^2-2a+1

  • 三角関数の問題です。

    実数x、yが11x^2+12xy+6y^2=4を満たす時、 x^2+y^2の最大値と最小値を次のように求める。 xy平面上の原点Oと他の点P(x,y)を結ぶ線分OPの長さをr、 x軸と動径OPのなす角をθとすると、 1/r^2(11x^2+12xy+6y^2)=(ア)cos^2θ+(イウ)sinθcosθ+(エ) =(オ)/(カ)cos2θ+(キ)sin2θ+(クケ)/(コ)=(サシ)/(ス)sin(2θ+α)+(クケ)/(コ)である。 但し、sinα=(セ)/(ソタ)、cosα=(チツ)/(テト)である。 従って、x^2+y^2の最大値は(ナ)、最小値は(ニ)/(ヌネ)である。 まったく手に負えません… 問題の意味が全然わからないのですが どなたかわかりやすく説明していただけませんか?

  • 2次関数の問題です。

    2次関数y=ー2x∧2+ax+bのグラフをcとする。cは頂点の座標が (a/[ア],a∧2/[イ]+b) の放物線である。cが点(3,-8)を通るとき、     b=[ウ][エ]a+10 が成り立つ。このときグラフcを考える。 (1)cがx軸と接するとき、a=[オ]またはa=[カ][キ]である。a=[カ][キ]のときの放物線は、a=[オ]のときの放物線をx軸方向に[ク]だけ平行移動したものである。 (2)cの頂点のy座標の値が最小になるのは、a=[ケ][コ]のときで、この時の最小値は[サ][シ]である。 以上。 (1)までは理解できるのですが、(2)に苦しんでいます。わかりやすく教えてください。 宜しくお願いします

専門家に質問してみよう