三角関数の問題解説

このQ&Aのポイント
  • 三角関数が苦手な人のための解説
  • 円と半径の関係を用いた問題解説
  • 三角関数の性質を活用した問題解説
回答を見る
  • ベストアンサー

三角関数について

質問失礼します。 三角関数が苦手で下の問題が解けません。 やり方など教えてほしいです。 aを正の定数とする。点Oを原点とする座標平面において、中心がOで、半径が1の円と半径が2の円をそれぞれc1、c2とする。θ≧0を満たす実数θに対して、c1上の点をp(cosaθ、sinaθ)、c2上の点をQ(2cos(π-θ/2)、2sin(π-θ/2))とする。 (1)3点O、p、Qがこの順に一直線上にあるような最小のθの値はθ=アπ/イa+ウである。 (2)線分pQの長さの2乗pQ2乗は、エcos((オa+カ)θ/キ)+クである。 (3)θの関数f(θ)=エcos((オa+カ)θ/キ)+クとおき、f(θ)の正の周期のうち最小のものが3πであるとすると、a=ケ/コである。 以上です。 よろしくおねがいします。 長文失礼しました。

質問者が選んだベストアンサー

  • ベストアンサー
  • ONEONE
  • ベストアンサー率48% (279/575)
回答No.1

(1) 3点O,P,Qがこの順に一直線上にあるときは、aθとπ-θ/2が2nπ(n:整数)の差を持つので aθ-(π-θ/2)=2nπ 最小のθはn=0のとき (2) 三平方の定理より PQ^2={cos(aθ)-2cos(π-θ/2)}^2^{sin(aθ)-2sin(π-θ/2)}^2 = 5+4cos(aθ+θ/2) (3) 周期が3πなのでθの係数 a+1/2=2/3

0123apple
質問者

補足

解答ありがとうございます^^ とても有り難いです! 補足すみません; (2)の三平方の定理がうまくできないのでよかったら詳しく教えてもらえませんか;?

関連するQ&A

  • 三角関数

    0<θ<πとして y=cos(πsinθ)sin(πsinθ) ア<sinθ≦イであるから、y>0となるのは、θについて 0<sinθ<ウ/エ が成り立つときである。 したがって、y>0となるのは 0<θ<オ/カπ、キ/クπ<θ<π のときである。 という問題ですが。 ア0 イ1までしか分かりませんでした。 どなたかよろしくお願いします。

  • 数学座標、最小値

    点Oを原点とする座標平面において、中心がOで半径2の円と半径1の円をそれぞれC1,C2とする。角θの動径と円C1との交点をPとし3/2π-2θの動径と円C2との交点をQとする。ここで、動径はOを中心とし、その始線はX軸の正の部分とする。また、θのとり得る値の範囲は0≦θ<2πとする。 (1)θ=π/3とき、点P,Qの座標はP(ア、イ),Q(ウ√エ/オ、カ/キ)である。 (2)線分PQの長さの最小値はクであり、そのときのθの値は小さい順に π/ケ、コ/サπ、シス/セπである。 全くわかりません。詳しい説明と一緒に解答をお願いします。

  • 三角関数

    0≦α≦πとする。x≧0を満たすすべてのxに対して、不等式 2xsinαcosα-2(√3x+1)cos^2α-√2cosα+√3x+2≧0 が成り立つための条件は sinアα≧√イcosαウαかつ エcos^2α+√オcosα-カ≦0が成り立つことである。 これより、αの値の範囲は キ/クπ≦α≦ケ/コπである。 角がバラバラなので2倍角の公式等で揃えようとしましたが、私には無理でした。どなたか教えて下さい。

  • 三角関数が分かりません(;o;)

    明日 数学で当たるのですが 数学が嫌いなので ぜんぜん わかりません (;o;) そこで よかったら 途中の式も入れて カタカナの部分を求めるのを お願いします! △ABCにおいて、∠B=Θ、∠C=π/2、AB=2sinΘ とする。 このとき l=sinアΘ-cosイΘ+ウ =√エsin (オΘ-π/カ.)+ウ よって、Θが 0<Θ<π/2の範囲で変化するとき Lは Θ=キπ/ クのとき、 最大値ケ+√コをとる 明日までにお願いします!

  • 数II・三角関数

    【問1】x≧0を満たすすべてのxに対して、 不等式xcos^2α+2√3xsinαcosα-(x-4)sin^2α-1>0…(1) が成り立つようなαの値の範囲を求めよ。ただし、0≦α≦π/2とする。 (1)の左辺をxについて整理すると (√3sinアα+cosイα)x+(ウsinα+エ)(オsinα-カ)>0であり、 x≧0を満たすすべてのxについて(1)が成り立つ条件は √3sinアα+cosイα≧0かつ(ウsinα+エ)(オsinα-カ)>0が成り立つことである。 これより、求めるαの値の範囲はπ/キ<α≦クπ/ケコである。 【問2】0≦Θ<2πのとき、y=sin2Θ+2√2sinΘ+2√2cosΘ-4とする。 x=sinΘ+cosΘとおくと、2sinΘcosΘ=x^ア-イであるからy=x^ウ+エ√オx-カである。 ここで、x=√キsin(Θ+π/ク)であるから、xのとりうる値の範囲は-√ケ≦x≦√コである。 したがって、yはΘ=π/サのとき最大値シをとり、Θ=スπ/セのとき、最小値ソタをとる。

  • 三角関数の問題です。

    [1] cos2x=cos3x (1) 2x=ア+2nπ (n=0,±1,±2,・・・) アにあてはまるものを次のうちから選べ。 0→ ±3x 1→ ±3x+π/2 2→ ±3x+π 3→ ±3x+3π/2 したがって、0<x<πの範囲で(1)を満たすxは x=イπ/ウとx=エπ/オの2個存在する。 [2] イπ/ウ=α,エπ/オ=βとし、 |sinα|=a,|cosα|=b,|sinβ|=c,|cosβ|=d とおくと,a~dの大小関係は次のようになる。   カ<キ<ク<ケ カキクケにはa~dのうちから適するものを選べ。 センター試験レベルですが解説つきで教えてくださいいい。 あとやってみた感じの難易度もおねがいします。

  • 三角関数

    Oを原点とするxy平面上の半円x2(二乗)+y2(二乗)=4 y≧0の第一象限にある部分に点A、第二象限にある部分に点Bをとる。 ABがx軸と平行となるようにとる。 x軸の正の向きからOAまでの角をθ(0<θ<90°)とする。 ABはいくつになるか? という問題で、私はOAが半径になるので2 これよりAからy軸までの距離をAPとすると cosθ=AP/2 AP=2cosθ よってABはこの2倍だから AB=4cosθ になりました。 でも答えは AB=cosθ だそうです。 どこが違うのか教えてください!

  • 2次関数の問題です。

    2次関数y=ー2x∧2+ax+bのグラフをcとする。cは頂点の座標が (a/[ア],a∧2/[イ]+b) の放物線である。cが点(3,-8)を通るとき、     b=[ウ][エ]a+10 が成り立つ。このときグラフcを考える。 (1)cがx軸と接するとき、a=[オ]またはa=[カ][キ]である。a=[カ][キ]のときの放物線は、a=[オ]のときの放物線をx軸方向に[ク]だけ平行移動したものである。 (2)cの頂点のy座標の値が最小になるのは、a=[ケ][コ]のときで、この時の最小値は[サ][シ]である。 以上。 (1)までは理解できるのですが、(2)に苦しんでいます。わかりやすく教えてください。 宜しくお願いします

  • 三角関数の問題です

    問題がわかりません。教えていただくと助かります。 2cos^2θ-√3 sin2θ-(2a+1)(√3 cosθ-sinθ-1)=0 …(1) を考える。ただし、0≦θ<2π とする。 t=cos (θ+π/6) とおくと 4t^2=アcos^2θ-√イ sin2θ+ ウ であるから。(1)は t^2-(エ+オ/カ)t+ キ/ク = 0 a=3 のとき(1)の解は θ=π/ケ または コ / サ π である。 また、a=シ または スセ のとき(1)は 0≦θ<2π の範囲に3個の解をもつ。 (1)をどう、展開していけばいいのか教えて下さい。 よろしくお願いします。

  • 数IIBの問題です。

    数IIBの問題です。 aを1以上の定数とする。点Qを原点とする座標平面上において、中心がOで半径が3の円をCとする。θ≧0を満たす実数θに対して、C上の点をP、QをP(3cosaθ,3sinaθ)Q(3cos(θ/3+π/2),3sin(θ/3+π/2))とする。 (1)線分PQの長さの2乗PQ~2は(あ)である。また、θの関数f(θ)をf(θ)=(あ)とおく。f(θ)の正の周期のうち、最小のものが3π/2のとき、a=(い)である。 (2)PとQのy座標が等しくなるような最小のθの値は(う)である。θが0≦θ≦(う)の範囲を動くとき、円Cにおいて点Qの軌跡を弧とする扇形の面積は(え)である。 加法定理を使ってもよくわかりません。解説含め詳しくご教授ください。