• ベストアンサー
  • 困ってます

極限値

区分求積からlim(n->0)1/nΣ[k=0,n-1](k/n)=∫(0->1)xdxとなるのは、わかりますが、 次の場合はどうなるのか、教えてもらえると有り難いです。 (1)lim(n->0)(1/n)^2Σ[k=0,n-1](k/n) (1/2)/n で、0というのは、あまりに間違っていると思います。  正しい、解答はどうなるのでしょうか。 (2)lim(n->0)1/nΣ[k=0,n-1](k/n)((k+1)/n) これは、((k+1)/n)=(k/n)とみていいのでしょうか。  正しい、解答はどうなるのでしょうか。 (1)、(2)について、基本的なことですが、よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数92
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

 (1)は自然数の和の公式、(2)は自然数の平方和の公式をつかってはいかがですか。   Σ[k=1→n]k=n(n+1)/2, Σ[k=1→n]k^2=n(n+1)(2n+1)/6 (1) (1/n)^2 Σ[k=0→n-1] k/n =(1/n^3)×n(n-1)/2 =(1-1/n)/(2n) (2) (1/n)Σ[k=1→n-1] (k/n){(k+1)/n} =(1/n^3)Σ[k=1→n-1] (k^2+k) =(1/n^3){n(n-1)(2n-1)/6+n(n-1)/2} =(1-1/n)(2-1/n)+(1-1/n)/(2n)  後はn→∞にすれば極限値が求められます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます おっしゃる通りでした。 区分求積法を使わなくても良かった問題でした。 ただ、疑問はもし、区分求積をつかうとしたら どうなるか。。。でした。

関連するQ&A

  • 極限値の求め方。

    解いてみたのですが、答えが合っているか分からないので添削、解答お願いします。 limの下にn→∞を書く書き方が分からないので、lim n→∞という変な書き方になってしまいますが、すみません。 lim n→∞ ((n/((n^2)+(1^2)))+(n/((n^2)+(2^2)))+…+(n/((n^2)+(n^2)))) これの極限値を求める問題です。 = lim n→∞ n((1/((n^2)+(1^2)))+(1/((n^2)+(2^2)))+…+(1/((n^2)+(n^2)))) = lim n→∞ 1/n(((n^2)/((n^2)+(1^2)))+((n^2)/((n^2)+(2^2)))+…+((n^2)/((n^2)+(n^2)))) = lim n→∞ 1/n((1/(1+(1^2)/(n^2)))+(1/(1+(2^2)/(n^2)))+…+(1/(1+(n^2)/(n^2)))) = ∫[0,1]1/(1+x^2)dx = [(tan^-1)x][0,1] =π/4 区分求積法を使って解いたのですが、合っている自信がありません。 見にくくなってしまったのですが、回答をお願いします。

  • 極限値の求め方がよくわかりません。

    極限値の求め方がよくわかりません。 lim[log{2^(1/2) * 3^(1/3) * 4^(1/4) *・・・・* n^(1/n)}] /n   n→∞                                 です 分子のlog{2^(1/2) * 3^(1/3) * 4^(1/4) *・・・・* n^(1/n)} をどう処理するか? 分子が積になっているので、わかりません。

  • 極限値 問題

    極限値 問題 lim[x→0](sinx/x)=1を用いて、lim[x→0] (tan3x/sin2x)を求めよ。 tan3x=(sin3x/cos3x)として、lim[x→0] (sin3x/(sin2x・cos3x)) 積和の公式を使ってみて、lim[x→0] (1/2)・(sin3x/sin4x) 解き方が分かりません・・・ どのような操作を行って解けば良いのでしょうか?

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「区分求積からlim(n->0)1/nΣ[k=0,n-1](k/n)=∫(0->1)xdxとなるのは、わかりますが」 というのは本当ですか? これが「わかる」というなら, あなたは「区分求積法」をきちんと理解できていません.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます lim(n->0)でなくて、lim(n->∞)でした。 これで、よろしくおねがいします。

関連するQ&A

  • 極限値

    次の問題の解き方を教えてください。 lim(x→0) Xsin(1/X) lim(x→0)1/Xsin(X) lim(x→0)X^2/3 宜しくお願いします。

  • 極限値を求めたいのですが、教えてください

    次のような極限値を求める問題ですが、次の数列の収束・発散を調べ、収束する場合にはその極限値を求めよという問題です。   (1)lim(n→∞)  1+(-1)^n   (2)lim(n→∞)  √(n^2 +1) - √(n^2 -1)

  • いろいろな極限値

    次の極限値を求めよ。 (1)lim(X→+∞)(π/2 -tan^-1 X)^1/x (2)lim(X→+0) Xlog(sinX) (3)lim(X→+2) {log(h+1)-log3}/(h-2) (4)lim(X→+0) (Xtan^-1・1/X) (5)lim(X→+0) (X-1)/(cos^-1・X)^2 (6)lim x→0 (1-cosX)/X (7)lim X→+0 (1+X)^1/X (8)lim X→0 (tan^-1)・1/X^2 (9)lim X→0 (Xtan^-1)・1/X^2 (10)lim h→0 (e^5h - e^2h)/h (11)lim n→∞ 1/n(1/√(n+1)+ 1/√n+2 )+1/√2n) (12)lim x→+0  √{(x+3)(5x-1)}/(x+3) (13) lim x→-0  √{(x+3)(5x-1)}/(x+3) よろしくお願いします。

  • 次の極限値を求めよ

    次の極限値を求めよ lim[x→0] (tan^-1 x -2sinx + x)/x^5 解答解説お願いします。

  • 極限値について

    次の極限値をもとめてください。 lim(x→2) (2x^2-5x+2)/(x^2-4) lim(x→0) 1/x(1- 1/(x+1)) lim(x→0) 1/x(4/(x+2)-2) できればやり方なども教えてください。 また、どれか1つでもいいので回答よろしくお願いいたします。

  • 極限値の問題です

    以下の極限値を求める計算をしたのですが、 あっているか自信がありません。 詳しい方がいらっしゃいましたら、ご指導お願いします。 【問題】 一般項anが、次で与えられる数列{an}について、個々の収束・発散を調べ、収束する場合にはその極値を求めよ。 (1) 2^n (答)lim[n→∞] 2^n = ∞より、発散する。 (2) (2n^2+1)/(n^2+3) (答)lim[n→∞] (2n^2+1)/(n^2+3) =lim[n→∞] {2(n^2+3)-5}/(n^2+3) =lim[n→∞] { 2(n^2+3)/(n^2+3) - 5/(n^2+3) } =lim[n→∞] { 2 - 5/(n^2+3) } より、2に収束する。 (3) √(n+1)-√n (答)lim[n→∞] √(n+1)-√n =lim[n→∞] {(√(n+1)-√n)(√(n+1)+√n)}/(√(n+1)-√n) =lim[n→∞] (n+1-n)/(√(n+1)-√n) =lim[n→∞] 1/(√(n+1)-√n) また、lim[n→∞] 1/n = 0より、 √(n+1)-√nは、0に収束する。 以上、よろしくお願いします。

  • 極限値をあらわす

    f(x)が微分可能なとき次の極限値をf(a),f ’(a)であらわす問題で 1、lim f(a+2h)-f(a) / h   h→∞ 2、lim x^2・f(a)-a^2・f(x) / x-a    x→a の解き方を教えてください A 1、2f ’(a) 2、2a・f(a)-a^2・f ’(a)

  • 微分やΣの極限値代入について

    微分やΣを使った区分求積法で、 lim h=0 や lim n=∞ と代入する場面がありますが、代入する式が()の積の状態(展開する前の状態)で代入すれば全体の式が0になってしまうのに、一旦展開した後に代入する事でちゃんとした答えが導けるのはなぜなんでしょうか?式自体は同じもので、展開前に代入するか展開後に代入するかの違いだけなのに。メカニズムというか納得のできる仕組みを教えてください。

  • 極限値の問題です

    次の極限値を求めよ。 lim[n→∞] 1/n {(1+1/n)^2 + (1+2/n)^2 + ・・・ + (1+n/n)^2} Sn=1/n {(1+1/n)^2 + (1+2/n)^2 +・・・+(1+n/n)^2}とおき、  Sn=1/nΣ[n,k=1](1+k/n)^2 ここまでやり方として正しいでしょうか? また、この解法でやっていくと 与式=lim[n→∞]Sn   =lim[n→∞]1/nΣ[n,k=1](1+k/n)^2 となりf(x)が定まりますが、f(x)が何になるのか分からないです。 f(x)=(1+x)^2 でいいのでしょうか? お願いします。

  • 極限値の求め方

    lim x->0 tan3x/sin5x = lim x-> sin3x/cos3x * 1/sin5x ここまでは大丈夫なのですが、この次の式から理解出来ません。 =lim x->0 3/5 * sin3x/3x * 1/cos3x * 5x/sin5x 3/5とかどこからでてきたのかまったく分かりませんw 回答まってます!