極限計算について

このQ&Aのポイント
  • f(x)g(x)の極限計算についての疑問
  • Σの方だけ区分求積しておいて1/(2n)だけ極限を計算していないこと
  • 和、差、積を別々に計算して最後に足してよいかについての疑問
回答を見る
  • ベストアンサー

極限計算について

極限の計算において x→aのときにf(x)→A, g(x)→Bであるとする。 このとき f(x)g(x)→AB が成り立つ。 とあったのですが、そうだとしたら次の計算は成り立ちますか? lim[n→∞]1/(2n)×1/nΣ[上:n 下:k=1]{f(k/n)}^2 lim[n→∞]1/(2n)×∫(0→1){f(x)}^2dx=0 まず2段目の式についてはΣの方だけ区分求積しておいて1/(2n)だけ極限を計算していないのですが、こういう書き方はしてもよいのでしょうか?かといって 1/∞×∫(0→1){f(x)}^2dx=0 として∞なんかを計算式に書くのもダメですよね? まあこれは書き方の問題に過ぎないのですが... そこで極限においてですが、「和」も「差」も「積」も一つずつ別々に計算してそれを最後に足したり引いたりかけたりしてよいのでしょうか?例えば h(x)+I(x)+j(x)→α+β+γ(α,β,γはそれぞれの極限値とします) というのは成り立ちますか?もちろん足したり引いたりかけたりする項がn個の場合は成り立たないと思いますが。 あと上で書いたA,Bという極限値ですが有限値という制限がありました。当たり前だと思うのですが→0ももちろん有限値ですよね? 参考書に書いてあるようなレベルの質問ですが、ちょっと自分としては曖昧な点があるので一度アドバイス頂いた方が良いと思い質問させていただきました。よろしくお願いします!

質問者が選んだベストアンサー

  • ベストアンサー
  • proto
  • ベストアンサー率47% (366/775)
回答No.1

極限値関係の定理で  lim[n→∞]a_n=α  lim[n→∞]b_n=β のとき  lim[n→∞](a_n+b_n)=α+β  lim[n→∞](a_n*b_n)=α*β  lim[n→∞](a_n/b_n)=α/β  (ただしβ≠0)  lim[n→∞](c*a_n)=c*α  (cは定数) というものがあります 関数の極限に付いても  lim[n→∞]x_n=a の時  lim[x→a]f(x)=lim[n→∞]f(x_n) とかけるので同じような事が成り立ちます 質問の内容はこれに尽きる気がします 具体的に書くと  lim[n→∞]{(1/(2n))*(1/nΣ[_k=1,^n]{f(k/n)}^2)}      ={lim[n→∞](1/(2n))}*{lim[n→∞](1/nΣ[_k=1,^n]{f(k/n)}^2)}      =0*∫(0→1){f(x)}^2dx=0 が正しい書き方です もし、上の定理が本当に成り立つのかを 聞きたいのなら、ε-δ論法などで証明出来ます

rockman9
質問者

お礼

よくわかりました!定理の証明は現時点では必要ないので大丈夫です!どうもありがとうございました!!

関連するQ&A

  • 極限値を求める問題です

    よろしくお願いします。 以下の問題を解いていたのですが、いまいち自信がありません。 また、(3)の問題の解き方がどうしてもわかりません。 わかる方、ご指導のほど、よろしくお願いします。 【問題】 ()内の関数の定積分と関連されることにより、次の極限値を求めよ、 (1) lim[n→∞] {(1/(n+1) + 1/(n+2) + … + 1/(n+n)} これを適用する→(1/1+x) 自分の答え =lim[n→∞] (1/n){(1/(1+1/n) + 1/(1+2/n) + … + 1/(1+n/n)} f(x)=1/(1+x), 1/n=hとおくと、 lim [n→0] h(f(h)+f(2h)+…+f(nh)) ∫[0→1] 1/(1+x) dx = [log(x+1)](0→1) =log(2)-log(1)=log(2/1)=log(2) (2) lim[n→∞] {(n/n^2 + n/(n^2+1^2)+…+n/(n^2+(n-1)^2)} これを適用する→(1/(1+x^2)) 自分の答え 各項を、n/(n^2+k^2)=1/(1+(k/n)^2)*1/n (k=0,1,…,(n-1))と表す。 次に、n→∞の極限に移行して、 lim [n→∞] Σ 1/(1+(k/n)^2)*1/n =∫[0→1] 1/(1+x^2) dx = [arctan(x)](0→1) =[arctan(1)]-[arctan(0)]=π/4-0=π/4 (3) lim[n→∞] 1/(n^(a+1)) Σ[k=1→n] k^a これを適用する→(x^a (a>0)) 自分の答え ??? 以上、ご指導のほど、よろしくお願いします。

  • 数列・関数の極限について

    俗に言う「はさみうちの原理」とその周辺に関して質問があります。 数学IIIの教科書によると, すべての自然数nに対し a_n ≦ b_n ≦ c_nのとき lim{n→∞}a_n = lim{n→∞}c_n = α(定数) ⇒ lim_{n→∞}b_n = α lim{x→∞}f(x) = lim{x→∞}h(x) = α(定数)とする。 十分大きいxに対し,f(x) ≦ g(x) ≦ h(x) ⇒ lim_{x→∞}g(x) = α となっております。 (1)limを登場させる順番がなぜ違うのか?   数列の極限の方ではまず不等式を記し,関数の極限の方ではlimから記しています。 (2)「すべての」と「十分大きい」の部分は数列の極限と関数の極限で異なるか?   数列の極限の方でも「十分大きい自然数nに対し」でもよいような気がするのですが…。 以上、よろしくお願いします。

  • 極限の計算

    f(x)=lim(n→∞){x^(2n)-x^(2n-1)+ax^2+bx/x^(2n)+1} を求めよ。という問題なのですが、私の解答、方針が正しいか教えてください。(答えは合っていました) f(x)=lim(n→∞){(x^2)n-(x^2)^n×(1/x)+ax^2+bx/(x^2)n+1} と変形して、(x^2)nの極限がどうなるのかで場合分けする。 (★1/xについてはx=0の場合どうなるか気をつける) x^2<1、x^2=1、x^2>1として、場合分けする。 (ア)x<-1、1<xのとき、f(x)=1-1/x (イ)x=-1のとき、f(-1)=a-b+2/2 (ウ)x=1のとき、f(1)=b+b/2 (エ)-1<x<1のとき、(x^)nの極限は0だから、x^2nと懸念しているx^2n-1ともに、0に収束する。 f(x)=ax^2+bx 私の解答および、その方針は正しいでしょうか?特に、最初の式変形で、1/xを作り出したところで、x=0となる恐れがあるのですが、そこはどのように言及しておけばよいのでしょうか?

  • 極限値の求め方。

    解いてみたのですが、答えが合っているか分からないので添削、解答お願いします。 limの下にn→∞を書く書き方が分からないので、lim n→∞という変な書き方になってしまいますが、すみません。 lim n→∞ ((n/((n^2)+(1^2)))+(n/((n^2)+(2^2)))+…+(n/((n^2)+(n^2)))) これの極限値を求める問題です。 = lim n→∞ n((1/((n^2)+(1^2)))+(1/((n^2)+(2^2)))+…+(1/((n^2)+(n^2)))) = lim n→∞ 1/n(((n^2)/((n^2)+(1^2)))+((n^2)/((n^2)+(2^2)))+…+((n^2)/((n^2)+(n^2)))) = lim n→∞ 1/n((1/(1+(1^2)/(n^2)))+(1/(1+(2^2)/(n^2)))+…+(1/(1+(n^2)/(n^2)))) = ∫[0,1]1/(1+x^2)dx = [(tan^-1)x][0,1] =π/4 区分求積法を使って解いたのですが、合っている自信がありません。 見にくくなってしまったのですが、回答をお願いします。

  • 数学3 極限値の計算

    極限値の計算をするときに、 lim(x → a){f(x)+g(x)} = lim(x → a) f(x) + lim(x → a) g(x) といったように、原理的には、多項式を単項式に分解してそれぞれにlimを分配したような形にして計算しますよね。 そのときに、lim(x → ∞) {√(x^2+3) - x } のような問題の、ルートの中身を計算出来るのはなぜですか。 もちろん、直感的には自然なことだとは思うのですが、教科書にあるような極限値の性質に従って各項にlimを分配しようと考えたらよくわからなくなりました。 また、極限値の計算というのは、普段は途中経過を省略して計算しますが、原理的にはどこまで分解して計算しているのでしょうか。 lim(x → a) 1/x^2 でしたら、 lim(x → a) 1/x^2 = lim(x → a) 1 / { lim(x → a) x * lim(x → a) x } まで分解して計算していることになっているのでしょうか。 わかってないことだらけですが、よろしくお願いいたします。

  • 区分求積法の計算について

    区分求積法を用いた積分の解き方について、ご教授お願いします。 途中まで解いたのですが、このあとどうすればいいかわかりません。 わかる方、ご指導宜しくおねがいします。 【問題】 閉区間[1,3]をn等分して得られる分割を考え、 定積分の定義にしたがって(区分求積法を用いて)、次の計算をせよ。 ∫[1→3] (2x+1) dx 【自分の答え】 1~n番目までn個に分割した時のk番目の微小面積を合計する。 k番目のx座標(=微笑面積のx座標)は、 1+(2/n)*(k-1)と表すことができる。 よって、k番目の微小面積は (2 * ( 1 + (2(k-1)/n)) + 1) * (2/n) これを、1~n番目まで足し合わせるので、 Σ[k=1~n] (2 * ( 1 + (2(k-1)/n)) + 1) * (2/n) これのn→∞の場合を計算する。 区分積分法の基本公式 ∫[0→1]{ f(x) }dx = lim[n→∞]{n*Σ[k=1~n] {f(k/n)}}より、 ∫[1→3]{ 2x+1 }dx = lim[n→∞]{Σ[k=1~n] (2 * ( 1 + (2(k-1)/n)) + 1) * (2/n)} ※ここから、どう計算をおこなえばいいかわかりません。  Σを展開すればいいとは思うですが。。。 以上、ご指導のほど、よろしくお願いします。

  • 極限値の問題です

    次の極限値を求めよ。 lim[n→∞] 1/n {(1+1/n)^2 + (1+2/n)^2 + ・・・ + (1+n/n)^2} Sn=1/n {(1+1/n)^2 + (1+2/n)^2 +・・・+(1+n/n)^2}とおき、  Sn=1/nΣ[n,k=1](1+k/n)^2 ここまでやり方として正しいでしょうか? また、この解法でやっていくと 与式=lim[n→∞]Sn   =lim[n→∞]1/nΣ[n,k=1](1+k/n)^2 となりf(x)が定まりますが、f(x)が何になるのか分からないです。 f(x)=(1+x)^2 でいいのでしょうか? お願いします。

  • 極限値,計算過程もお願いします。

    次の極限値を求めよ。 (1)lim(n→∞)(1+(1/(n+1)))^2n (2)lim(n→∞)(n*sin(1/n)) (3)lim(n→∞)(Σ~n_k=1(1/(k(k+4))) 答えだけしか,のっていないので,計算過程をできるだけ詳しく教えて下さい。 1つ1つ理解していきたいので,できれば解説もお願いしたいです。よろしくお願いします。

  • 極限です。pert2・・・・

    数列sin(^n)θの極限をもとめよただし-π/2≦θ≦π/2。 第n項が次の式で表される数列の極限を調べよ。 {r^(2n)-2^(2n+1)}/{r^(2n)+4^n} {a^(n+1)+b^(n+1)}/{a^(n)+b^(n)}      ただしa,b共に正の定数 次の無限級数の収束発散を調べなさい。 ∞ Σ2/{√(n+2)+√n} n=1 |x|<1/2のとき無限級数の和を求めよ。 1+3x+7x^2+15x^3+・・・・・+(2^(n)-1)x^(n-1)+・・・ lim[√{(1/x)+1}-√{(1/x)-1}]  の極限値を求めよ。 x→+0 x→∞のときf(x)=√(x^2 +1)-axが収束するような正の定数aの値とそのときの lim f(x)を求めよ x→∞ 以上です。おねがいします。 何度もごめんなさい。

  • 極限計算について

    こんにちは。 lim(-1)^n/√nを極限(n→∞)の計算をしたら0になるそうなのですが何でですか??  極限の定義(εを使う)を使って解けますか??? アドバイスお願いします(泣)