• 締切済み
  • すぐに回答を!

外力のある相対運動

物体が二つあった場合、そこに働く力がお互いの相互作用(ばねなど)だけの場合は 換算質量を用いた相対座標系における運動方程式をとくことで、二つの物体の相対位置と相対速度がわかると思いますが、もしも物質AとBそれぞれに働く外力がことなる場合は、このように一つの運動方程式をとくことで相対位置を求めることができないのでしょうか?

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数475
  • ありがとう数0

みんなの回答

  • 回答No.1

以下,「~」はベクトル,「'」は時間微分を表すものとします。 F1~,F2~を外力,f~は相互作用とします。 m1r1~ '' = F1~ + f~ m2r2~ '' = F2~ - f~ r1~ '' = (F1~ + f~)/m1 r2~ '' = (F2~ - f~)/m2 r~ = r1~ - r2~ とおくと, r~ '' = (F1~ + f~)/m1 - (F2~ - f~)/m2 外力が一様重力のように質量に比例する同一方向の力であれば,外力の項がキャンセルされますが,そうでない一般的個別的な外力の場合には簡単にはならないというだけで,解けないというわけではありません。また,初めの2式を辺々加えると, m1r1~ '' + m2r2~ '' = F1~ + F2~ 重心位置は R~ = (m1r1~ + m2r2~)/M, M = m1 + m2 ですから, MR~ '' = F1~ + F2~ と重心の運動方程式は右辺が外力の合力となるだけです。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。 大変勉強になります。 物理に精通していらっしゃるようで、わかりやすい回答で参考になります。 気になったのですが、 絶対座標系⇒個々の物体の絶対速度、位置が分かる 相対座標系⇒複数の物体の相対速度、相対速度が分かる と理解しているのですが、これでよろしいでしょうか? そうであるならば、 絶対座標は個々の物体の情報がほしいとき、相対座標は物体同士の相対関係を知りたいときに 用いると思うのですが、 重心座標はどのようなときに用いるものなのでしょうか? また、本質問からはそれてしまうかもしれませんが、 一本のばねの両端に物体AとBが繋がってる場合の物体Bを基準としたときの物体Aの運動を 相対座標系で考えると運動方程式は M1*ra~'' = Fk M2*rb~'' = -Fk より、 (ra~ - rb~)'' = Fk*(1/M1 + 1/M2)となり、 M1M2/(M1+M2) * r~'' = Fk Mは質量、rはAとBの相対位置、Fkはバネから受ける力 が得られますので、これを解くことでAとBの相対位置が分かるとおもうのですが これは質点の話ですよね? もしもこれが大きさをもっている剛体ならば、この運動方程式はどうなるのでしょうか? つまり、剛体にこの方程式を利用した場合、これは剛体AとBの中心位置の相対位置がわかるのか それともAとBの表面部分の相対位置がわかるのか、いまいち分からないのです。 よろしくお願いします。

関連するQ&A

  • 2物体の相対運動

    二つの物体がお互いに接近してきて、衝突する問題についてなのですが、 物体Aが速度ua、物体Bが速度ubで接近してきているとします。 従って相対速度ua+ubで近づくとおもうんですが、このような問題の場合、片方(物体B)を固定して 固定した物体から見た運動として考えることはできないのでしょうか? つまり物体Aが速度ua+ubで固定されたBに近づくと考えたのですが、 その場合衝突後の速度ははね返り係数をeとするとどうなるのでしょうか? 運動量が保存するのであくまでBからみた運動と考えると完全弾性衝突(e=1)として考えていいのでしょうか? あとよくこういった2体問題で換算質量を用いられているとおもうのですが、あれの意味はいったいなんなのでしょうか? 素直にそれぞれの物体について運動方程式を考えるだけではいけないのでしょうか?

  • 運動量保存の法則の成立のポイント

    こんにちは、いつも勉強させてもらっています。 不明瞭なタイトルですみません。物理の問題で、運動量保存の法則が使えるか否かを判断するのに、こういう考えではどうかという私の考えを添削・確認頂きたく質問投稿いたしました。どうか宜しくお願いします。 運動量保存の法則が成り立つか否かは、「外力がその系に働いているか否か」、で決まるということをよく習いました。しかし、その外力としてどういうものが含まれるのかが、よく疑問に挙がります。たとえば、重力、たとえば、摩擦力などがよく質問にあがるのではないかと思います。 外力という考えを持ち込むよりも、 運動量保存の法則を当てはめたい物体の『質量・速度の変化が観測できること』がポイントではないかと思いました。運動量保存の法則は、作用反作用の法則から導かれる訳ですが、作用、反作用の力を受けた物体の質量が分からなければなりません。たとえば、質量m1の物体Aが速度vで地面にたたきつけられた場合、一般に運動量保存の法則は使えません。物体Aは地面(地球)から力を受け、地球も物体Aから同じ大きさの力を受けます。しかし、地球の質量も速度の変化を測定するのは「現実的には」不可能なので、運動量保存の法則は使えない、ということではないかと思っています。 また、キャスター付きのテーブル(質量m2)上で物体Aを速度vで滑らせると、摩擦力で速度が減速します。しかし、同じ大きさの摩擦力がテーブルにもかかるため、運動量保存の法則は適用できます。この場合、摩擦力は、いわゆる「外力」に含まれません。一方で、テーブルが地面に固定されている場合は運動量保存の法則は適用できません。テーブルに同等の摩擦力が働きますが、テーブルは地球に固定されており、地球の速度の変化を知ることはできないため、運動量保存の法則は使えません。この際、摩擦力は、運動量保存則を成り立たせないいわゆる「外力」になるかと思います。 重力はほとんどの場合「外力」として定義されますが、ある物体に地球からの万有引力が働いている場合、その物体もわずかながら地球に引力を及ぼし、作用・反作用が成り立ち、地球の質量・速度の変化がわかれば、運動量保存則を使えると思います(あくまで地球の質量・速度の変化がわかればだと思います)。 このように、運動量保存の法則が使えるか、使えないかを考える際、いわゆる「系に外力が働いているかどうか」という少々理解しにくい言葉よりも、「対象としている物体(たとえば、衝突の相手)についてその質量・速度の変化を観測できるかどうか」、と考えるのはどうかと思いました。もっと極端に言いますと、「作用の相手が地球かどうか(相手が地球、もしくは地球に固定されたものなら、運動量保存の法則適用不可)」、と考えるのはどうかと思いました。 以上ですが、皆さんにとって当たり前のことを申し上げているのかもしれないと心配しておりますが、 物理の諸問題を解く際のヒント、シンプルな考え方として、どうかと思いました。 もしかしたら、間違ったことを言っているかもしれないという心配もしており、どうか添削、訂正を 頂ければと思います。 宜しくお願いします。

  • ばねの運動

    大学で基礎力学を履修しているものです。 今、重心のところを習っているんですが、次の問題がわかりません。 「自然長l、ばね定数kのばねの下端に質量m1の物体A、上端に質量m2の物体Bをとりつける。物体Bを支えた状態から静かに離して自由落下させたときの運動を考える。鉛直下向きにZ軸をとり、物体A,BのZ座標をそれぞれz1,z2とする。時刻T=0における物体Bの位置を原点とする。重力加速度の大きさをgとして次の問いに答えよ。 (1)T=0における物体の位置を求めよ (2)物体A,Bの運動方程式をそれぞれ書き下せ (3)重心座標の運動方程式を求め、これをといて重心座標を時刻Tの関数としてあらわせ (4)相対座標の運動方程式を求め、これをといて相対座標の運動方程式を時刻Tの関数として表せ という問題です。 (1)はわかるんですが、(2)、(3)、(4)がわからないです。 (2)は、考えてみたところ、m1a=m1-k(l-z1) m2a=(m1+m2)gーk(l-z1)となりました(a=d^2x/dt^2)

  • 相対運動と相対速度について概念が解らなくなったので教えてください。

    相対運動と相対速度について概念が解らなくなったので教えてください。   (1)物理学上、宇宙空間と時間の進行だけがある場合、そこで座標を定義することは    できますか?(幾何学的な仮想座標系ではなく)   (2)この宇宙空間に宇宙船Aが一機だけあるとします。    このときは宇宙船Aのどこかを原点として座標系を展開できます。    ただ宇宙空間にぽつんと一機あるだけなのでAが空間に対し動いているか否かは不明です。        この場合自分自身の座標系上で、ある時間内に自分が元の位置から相対距離でどれ    くらい動いたか?を計れますか?    (予め加速などから逆算できるような計測装置は積んでいないとして)    それとも原点の位置に別の何らかの目印を置いてからでないと無理ですか?   (3)宇宙船Aに宇宙船Bが近づいているとします。     AB相互の相対距離と接近の相対速度は相互の座標系で計れるとします。     このとき宇宙空間から見た場合、          a. Aが静止でBが速度Vで接近している。          b. Bが静止でAが速度Vで接近している。          c. AもBも動きながら接近している。それぞれの速度はVa、Vbである。              の何れかを判定する方法はありますか?     また宇宙空間に対してAとBが動いているか否かを知るにはどうすればよいですか?   (4)もし宇宙空間に原点が見つからず座標を定義出来ないとすれば、宇宙空間に対して     何かがどれくらいの速度で動いているということをどうやって計測すればよいですか?        (5)宇宙では「銀河系」が「銀河団」に引き寄せられその「銀河団」がまた「超銀河団」に     時速XXkmで引き寄せられていると聞きました。         このときの時速XXkmとはどこの座標系を基準にで計ったものですか?

  • 重心の運動

    質量m、2mの質点が、自然長l、ばね定数kのばねで接続されている。 この一連の物体が振動しながら並進運動している時、重心の速度を求めよ。 ただし、質量mの質点の位置はx1、2mはx2、重心はx3とする。 (右向き正の一次元運動とし、x1<x2) という問題です。以下微分は’で表現します。 重心座標 x3=(mx1 + 2mx2)/(3m) 換算質量 μ=2m^2/3m ばねの伸び d=x2-x1-l だと思うのですが、重心の運動方程式は μx3''=-kd でしょうか?仮にこれの場合、積分定数をv0として、 重心速度 v=x3'=(-kd/μ)t + v0 となるのでしょうか? 重心などの2体問題が非常に苦手で、どう解いていいのか混乱してしまいます。 この場合、重心に直接働く力は無いと思うのですが、運動方程式に書く場合はどうすればよいのでしょう?2つの質点に働く力の合計でしょうか?(それだと異符号かつ絶対値同じで0になる気がしますので、上の解答では-kdだけ書きましたが・・・。) また、質量は換算質量でよいのでしょうか?それとも全質量でしょうか? ご教授の程、よろしくお願い致します。

  • 相対運動の考え方

    二つの物体A、Bがあり、Aは鉛直下向き、Bは鉛直上向きに運動し、お互いに接近している運動を考えます。接近し、いずれ衝突し、反発するので、その粒子間の距離が時間的にどのよう変化していくのか知りたいのですが、以下の考えたは間違っているでしょうか? Bを基準としてAの運動を考える。 つまり速度U= Ua-UbでAがBに接近してくる。 Aについての運動方程式 m1 * a = Fをとく Aの位置がBの位置と重なったらAの速度を符号反対にしてe倍(はねかえり定数)する。 衝突後もさきほどと同様の運動方程式をとく Bを基準として考えたので、Aの運動方程式をとくだけでAの位置がもとまり、それがそのまま物体間の距離になるとおもったのですが、どうなのでしょうか?

  • 質点の運動の表し方について

    ニュートンの3法則で 第1法則(慣性の法則) 第2法則(運動の法則)F=d/dt・v 第3法則(作用反作用の法則)二つの物体が互いに力を及ぼし合うとき二つの力は同一直線状にあり大きさが等しく向きが反対である。 と習ったのですが、簡単化のためか二つの物体を取り上げ、さらには外力がない場合のみを考えて書いてあります。 粒子がN個あったときはどのように表されるのでしょうか?(外力は無しで) また、2つの物体の場合ででいいのですが、外力が加わったときはどのようにに表されるのでしょうか? とても興味があり、いろいろと考えていたのですが、よくわかりません。 どなたか教えてください。 宜しくお願いします。

  • (力学)空気抵抗による単振動の減衰運動についての質問

    質量mの物体を一端に付けたバネ(バネ定数k自然長k0バネの質量は無視) の他端を天井からつるし、鉛直方向に物体を振動させる。 重力加速度をgとする。その他必要な物理量があれば定義して使ってよい t=0に自然長の位置から物体に初速度を与えずに運動を開始させた。 天井を原点とし、下方を正とするx軸座標を使って以下の問いに答えよ 1.空気抵抗を考える場合(比例定数b)、物体はいわゆる減衰運動を行う。 このとき、この物体の減衰運動の運動方程式をこたえよ。 2.この運動の力学的エネルギーEを求め、ついでその時間変化率をもとめ正負を 判定せよ。この場合の力学的エネルギーとは物体の運動エネルギー、重力の 位置エネルギー、バネの変形エネルギーの和である。 物体に加わる外力が一定の場合は高校の時よく解いた問題なのでわかると思いますが 今回の場合は空気抵抗ということでどのように解いたらよいか良くわかりません。 自由落下時の空気抵抗は解ります。教科書には空気抵抗の記述すらありません。 お願いします

  • 衝突寸前の相対速度

    二つの質量m_1,m_2の物体が、相対距離に比例する引力を受けて運動する。相対距離aの位置から静かに離したとき、衝突する直前の相対速度は? と言う問題なのですが・・・。 引力はだんだん弱まっていくので微小時間Δtの間に進む距離を考えてやったのですが、式がめちゃくちゃになってしまいました。どのように考えればよいでしょうか。分かる方回答お願いします!

  • 振動する台上における相対運動

    水平の台の上に物体が乗っています。 台と物体の間には摩擦が働き、 摩擦係数は物体の速度(v1とします)に比例しμ = kv1と表せます。 ここで、台が変位H(t)、物体がh(t)の変位で運動したとします。 この運動を台上から観測したとすると、 物体の相対的な変位はh(t)-H(t)となりますよね。 これを新たにS(t)とします。またこれからは、慣性系に対する物体の速度をV(t)、加速度をA(t)とした場合 V(t) = dS(t)/dt = dh(t)/dt + dH(t)/dt -----------(1) A(t) = d^2S(t)/dt^2 = d^2h(t)/dt^2 + d^2H/dt^2 -----------(2) となると思います。 で、h(t) = H(ω)exp(iωt) ----------(3) H(t) = Lexp(iωt)  ----------(4) が与えられているとき、 H(ω)を求めよって問題なんですが、これがいまいち分かりません (前置きが長くてすみません) 摩擦力は速度に比例するので、 f = mgkv1 = mgk×dS(t)/dt ----------(5) となりますよね。これを運動方程式に代入した場合、 ma=f ですので、 m×d^2S(t)/dt^2 = mgk×dS(t)/dt この式を、変数分離して物体の相対速度が求まりました。 また(3)、(4)を(1)に代入しても相対速度が求まります。 これを連立させると、H(ω)が求まったのですが、虚数が出てきてしまいました。あっているのかも分かりませんが、どんな運動をするのか、どなたかわかる方教えてください。 あと今までの過程に正直自信がありません。間違っていたらそこも指摘していただけると幸いです。よろしくお願いいたします。