• ベストアンサー
  • 困ってます

(力学)空気抵抗による単振動の減衰運動についての質問

質量mの物体を一端に付けたバネ(バネ定数k自然長k0バネの質量は無視) の他端を天井からつるし、鉛直方向に物体を振動させる。 重力加速度をgとする。その他必要な物理量があれば定義して使ってよい t=0に自然長の位置から物体に初速度を与えずに運動を開始させた。 天井を原点とし、下方を正とするx軸座標を使って以下の問いに答えよ 1.空気抵抗を考える場合(比例定数b)、物体はいわゆる減衰運動を行う。 このとき、この物体の減衰運動の運動方程式をこたえよ。 2.この運動の力学的エネルギーEを求め、ついでその時間変化率をもとめ正負を 判定せよ。この場合の力学的エネルギーとは物体の運動エネルギー、重力の 位置エネルギー、バネの変形エネルギーの和である。 物体に加わる外力が一定の場合は高校の時よく解いた問題なのでわかると思いますが 今回の場合は空気抵抗ということでどのように解いたらよいか良くわかりません。 自由落下時の空気抵抗は解ります。教科書には空気抵抗の記述すらありません。 お願いします

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数2
  • 閲覧数2134
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

通常の運動方程式  mx''=-kx に、速度抵抗の項-bx'を加えた  mx''=-kx-bx' が運動方程式になります。 参考サイト http://www6.ocn.ne.jp/~simuphys/gensui.html http://www.enveng.titech.ac.jp/morikawa/lecture/koenkai/00jgr/node16.html

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました 2番目のURLは授業でちょっとやったくらいで難しくてよく分かりませんでした(;;)が問題はなんとか解けました

その他の回答 (1)

  • 回答No.1
  • N64
  • ベストアンサー率25% (160/622)

このような場合、空気抵抗であれ、何であれ、抵抗は速度に比例する、として式を立てることが、多いと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます

関連するQ&A

  • 単振動(バネ)

    鉛直上向きにy軸をとり、重力加速度の大きさをgとする。ばね定数kのばねの上端を固定し、下端に質量mの物体をつける。ばねが自然長であるときの物体の位置をy=0とする。ばねの質量、空気抵抗は無視できる。物体は鉛直方向のみ運動する。 1、物体の運動方程式を求めよ 2、つりあいの位置y_eを求めよ 3、つりあいの位置からの変位をy_2(t) = y(t) - y_eとする。y_2に関する運動方程式を求めよ 4、運動方程式を解いて、位置y(t)と、v(t) = y '(t)の一般解を求めよ 5、時刻t= 0にy = y_0 の位置で静かに物体を放した(v (0) = 0 )とする。その後の運動y(t),v(t)を求めよ y_eはyの右下に小さいeがあるという意味 よろしくお願いします

  • 連成振動の力学的エネルギーについて

    物理学で出題された連成運動の問題の解法がわかりません。 連成振動の問題では、固有値を用いて解くと教わったのですが、2つの運動方程式を 行列表示にできません。どの様に解けばよいのでしょうか。ご意見よろしくお願いします。 [問題] 左から「壁|バネ1+物体1+バネ2+物体2」となっている連成振動で、 物体1,物体2の質量をm1,m2、バネ1,バネ2のバネ定数をk1,k2、バネ1,バネ2の自然長をl1,l2 の条件のもと、1次元的に振動する運動をします。質点と床の間の摩擦や空気抵抗、バネの質量 は無視できるものとし、左端の壁からそれぞれの質点までの距離をx1,x2としてこの質点系の 力学的エネルギーの式を導け。

  • 物理のバネの単振動です。

    物理の質問です! できなかったので解説してくれると助かります(;_;) 軽いつる巻ばねの一端に天井に取り付け、他端に質量mの小球を取り付けたところ、ばねは自然長の長さからLだけ伸びてつりあった。 さらに、小球をつりあいの位置から下方にAだけ引き下げて静かに手しを放したところ、小球の運動は単振動となった。手を放した瞬間を時間tの原点とする。重力による位置エネルギーおよびばねの弾性力による位置エネルギーの基準をつりあいの位置に取ることにすれば、運動している小球がつりあいの位置より下方にあるとき、 (1)小球の重力による位置エネルギーは重力加速度の大きさgとして表わせ (2)その時のっバネの弾性力による位置エネルギーと小球の運動エネルギーをそれぞれ表わせ (3)(1)と(2)の和がこのバネ振り子の力学的エネルギーでありxとなって一定に保たれる。xはなにか? よろしくお願いします。

  • 単振動 振幅

    高校物理です。 単振動の振幅についてなのですが、振幅の長さがよくわかりません。 参考書を読んでいたのですが、静かに離した位置が振動の端というのはどういうことでしょうか? 画像のようなことはないのでしょうか? 仮にこの解釈が間違っているとしたら次の問題はどういう意味なのでしょうか? 【ばね定数kのばねの上端を天井に固定し、下端に質量mの物体を取り付ける。 ばねの長さが自然の長さになるように、板を用いて物体を支える。 ばねの質量は無視でき、重力加速度の大きさをgとする。 板を急に取り去ると、物体は単振動を行なう。 この運動において、ばねの伸びの変化とともに、物体の速さも変わる。 物体の速さが0になるのは、ばねの伸びが0のときと、ばねの伸びが最大になるときであり・・・】 物体の速さが0になるときばねの伸びが0だとは限らないのではないでしょうか? 単振動する過程においてばねの振動の端が自然長より上の部分に達する可能性はないのでしょうか? どうぞよろしくお願いします。

  • 単振動の問題

    大学1年の力学でわからない問題があるので教えて下さい。 ------------------------------------------------------------ バネ定数kのバネの一端を壁に固定し、他端に質量Mの 物体Aを結び付け、滑らかな水平面上においた。さらに 質量mの物体BをAに押し付け、バネを自然の長さから Lだけ縮めて手を離した。物体の大きさ、バネの質量は 無視できるものとする。 1.物体Bが物体Aから離れる点はどこか?  その点に達する時間はいくらか? 2.1.の時の物体Bの速さを求めよ。 3.物体Bが離れた後、物体Aはどのような運動をするか?  運動する範囲および周期的運動の場合はその周期を記せ。 ------------------------------------------------------------ 運動方程式は (m+M)d^2x/dt^2=-kx で d^2x/dt^2=-ω^2x ω=√(k/(m+M)) ここまではできたのですが1~3の問題の考え方が わかりません。(ここまでも間違っていますか?) よろしくお願いします。

  • 単振動について

    バネ定数kのバネに質量mのpがつるされて停止している。この位置Oからpをしたへ引っ張って放すと、pは運動を始める。 Oを原点とし、下向きにx軸をとる。バネの自然長をl、pを放した点をA(x=d)とし、放した時をt=0とする。Oでの伸びをLとする。この時の最大の速さを求めたいのですが、 答えには単振動のやり方で書かれていました でも単振動は覚えるのが多くめんどくさいので、力学的エネルギー保存則でとこうと思ったのですが、式的には 1/2kd^2=1/2mv^2なんですが、 位置エネルギーは入らないのかと思い疑問に思ったので質問しました わかる方教えてください!!

  • 円運動と調和振動

    下記のような運動が実現するかどうか教えてください。 回転する剛体の棒の先にバネがついており、さらに物体がついています。このとき物体がバネによって振動しながら、自然長の位置が等速円運動し続けるような運動は起りうるでしょうか?重力や空気抵抗は無視でき、またバネはr方向以外には変位できないとします。 厳密な式を立てず、簡単な式か考え方で実現する、しないを言えるのでしょうか?

  • 単振動

    質量mの物体をバネ定数kのバネに接続し、角度がθの斜面を置いた摩擦はないとする。 バネに物体をつけたところLだけ伸びて静止した。 (1)Lを求めよ、 次に物体を自然長の長さまで持ち上げ時刻t=0で静かに手を放したところ、物体は単振動した。 (2)振幅を求めよ。 (3)一般の位置xでの運動方程式を立てよ。 (4)x(t)、v(t)を求めよ。 (5)手を放してから物体が斜面を2分の3Lだけ滑り降りるのにかかる時間とその時の速度の大きさを求めよ。 どう問題を解いていいのか全くわからないので出来れば詳しい解説も頂けたら幸いです。

  • 解析力学で減衰力は扱えるか?

    解析力学で運動方程式を導くとき,減衰力がある場合の取り扱い方について教えてください。 たとえば,質量・バネ・ダッシュポット系の場合,運動方程式はmx''+cx'+kx=0となりますが,この方程式を解析力学の手法で導けるのでしょうか? 宜しくお願い致します。

  • 単振動の問題(ばね)

    質量mの質点がばね定数kのばねにつながれている。 この質点はx軸方向の1次元にのみ運動し重力の影響はないと仮定する。自然長をx=0として以下の問いに答えよ。 A:抵抗がない場合。 問1 x軸方向の運動方程式を書け 問2 力学的エネルギーはE= 1/2 mv^2 + 1/2kx^2とかける。Eが保存することを問1の結果を用いて示せ。 問3 x=l(エル) の位置にはじめあり、t=0で静かに手を離した。この後の質点の位置xをtの関数として求めよ。 B:抵抗がある場合(速度に比例した抵抗があるとする。比例定数はη,このηは0<η<√4mkを満たす) 問4 x軸方向の運動方程式を書け 問5 x=l(エル) の位置にはじめあり、t=0で静かに手を離した。この後の質点の位置xをtの関数として求めよ。 という問題がありました。 考えた答えは 問1 F=-kx 問2 上記の式Eにおいてポテンシャルが1/2kx^2とあらわせる。 U=1/2kx^2 の-∇U=- (∂U/∂x)= -kx よってEは保存される 問4 F=-kx-ηv→ 問3と5が考え方すらまったくわかりません。お手数ですがどうしてそうなるのかまで概要がわかるように説明を添えて解説お願い申し上げます。