ベストアンサー 数学を教えてください! 2011/02/06 17:41 図のように、長方形OABCの辺BC、OA上にそれぞれ点P(6、4)、R(4、0)長方形OABCの内部に点Q(3、2)があり、長方形OABCが、折れ線PQRで2つの部分に分れている。左右それぞれの部分の面積を変えないように、折れ線PQRのかわりに、点Pを通る直線Lで長方形OABCを分けるとき、直線Lの式を求めなさい。 画像を拡大する みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー 19500618 ベストアンサー率11% (2/17) 2011/02/06 21:32 回答No.2 Y=x-2です。 まず、5角形C0RQPの面積を求める。 この面積と等しい面積の台形となるように、R’の座標(x、0)を求める。 二点、P(6,4) R’(x、0)よりLの式が求まります。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) matumotok ベストアンサー率35% (431/1203) 2011/02/06 18:53 回答No.1 こんにちは。 直線Lの式は、 Y = (4X-3)÷5 + 1 です。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 高校数学です。 原点をOとする座標平面に3点A(16,0),B(16,16),C(0,16)をとる。m>1とすし、直線y=mx+kをl,放物線y=3x^2+ax+bをFとする。lは正方形OABCの面積を二等分しており、点PでOAと交わり、点QでBCと交わっている。FはPとQの両方を通っている。 (1) k=-□m+□ (2) a=m-□□ を求めよ この(1)の求め方をどうしたらいいでしょうか? おねがします 数学の問題です。お願いします。 四面体OABCについて辺OA,BC,OB,ACの中点をそれぞれKLMNとし KLの中点を点Pとする。 このとき三点MPNは一直線上にあることを示せ。 数学 一般性について 「直線LおよびL上にない相違なる2点A,Bがある。L上に点Pを取りAP^2+BP^2を最小にする点Pをどこにおいたらいいか」という問題なのですが、解答ではAをy軸上に、Lをx軸にしてるのですが、AもLも特にどうこう題意で指定してないから、解答のように設定しても一般性は失われないのはわかるのですが、例えば別の問題で「三角形ABC上において、BC=1、B=60度、C=90度とする。三角形ABCの頂点とは異なる点P、Q、RがしれぞれBC、CA、AB上にあり三角形PQRは三角形であるとする。三角形PQRの面積Sの最小値を求めよ」というのがあったとします。題意には書かれていませんが線分RQが線分BCに平行のときの三角形PQRを設定したら一般性は失われるのでしょうか? 数学の問題です。 xy平面上に長方形OABCがあり、O(0,0)、A(s、0)、C(0、t)である。ただし、s>0、t>0とする。また、頂点Bは直線3x+4y=12上にある。次の問いに答えよ。 (1)sとtの取りえる値の範囲を求めよ。 (2)sをtの式で表わせ。 (3)長方形OABCの面積をtの式で表わせ。 (4)長方形OABCの面積の最大値とそのときのtの値を求めよ。 解説も添えて答えてもらえると更に有難いです。お願いします。 数学の問題なのですが Oを原点とする座標平面上に、放物線y=ax^2と正方形OABCがある. 2点A、Cはともに放物線上にあり、点Aの座標は(2.2)、点Bの座標は(0.4)である. また.2点B、Cを通る直線を l とし、 l と放物線との交点のうち、Cでない方の交点をDとする. (i) aの値を求めよ (ii) 直線 l の式を求めよ (iii) Dのx座標を t とするとき、t の値を求めよ (2) 直線 l 上に点Pをとる (i) 線分OPが三角形OBDの面積を2等分するときの点Pの座標を求めよ (ii) 三角系ODPの面積が四角形OADCの面積と等しくなるような点Pの座標をすべて求めよ. 解答または解説していただけると泣いて喜びます!!!!!!!!TAT 数学を教えてください! 図のように、折れ線ABCを境界線とするア、イの2つの土地がある。この2つの土地の面積は変えないで、境界線を点Aを通る直線APに改めたい。点Pは直線l上にあるものとして、直線APを作図しなさい。 数学IIICでこの問題の解き方がわかりません 直線 y=2x-4 上の点 P(1,-2) から放物線C:y=x² へ引いた2本の接線をl、mとし、 それぞれの接点をQ(q,q²)、R(r,r²)とする。(r<q) △PQRの面積が6√3 のとき、点Rを通り、△PQRの面積を二等分する直線を n とする。 この直線 n と放物線 C で囲まれる図形の面積を求めよ。 解き方とできれば解説もお願いします。 4点O(0,0) A(1,0) B(1,1) C(0,1)を頂点とする 4点O(0,0) A(1,0) B(1,1) C(0,1)を頂点とする正方形を、線分OA上の点Pと線分BC上の点Qを 結ぶ直線で折り返して点Oが線分AB上の点Rに重なるようにする。このとき点Cが重なる点を T(X,Y)とし、∠AOR=θとする。(0<θ<π/4) (1)直線PQの方程式をθを用いて表せ (2)X,Yをそれぞれθを用いて表せ (3)Tが描く曲線と線分BCで囲まれた部分の面積を求めよ お願いします 数学の問題です。教えてください。 問題は 「四面体OABCがあり、OA⊥OB、OB⊥OC、OC⊥OA、OA=√3、OC=√6、BC=√7を満たしている。 (1)AB=アであり、∠BAC=イウ°であるまた三角形ABCの外接円の半径は√エオ/カである。 (2)三角形ABCの面積はキ√ク/ケであり、点Oから平面ABCに垂線を下ろし、平面ABCとの交点をHとするとOH=√コ/サである。 (3)∠BACの二等分線と辺BCとの交点をDとすると、AD=シ√ス/セであり、cos∠OAD=ソ/タである。また、三角形ABCの内接円の中心をKとするときAK=チ√ツ-√テト/ナである。さらに、点Oから直線ADに垂線を下ろし、直線ADとの交点をLとするとKL=ニ√ヌネ-ノ√ハ/ヒである。」 です。 分かりづらいですがカタカナは答えの部分です。途中式と答えを教えて下さい。よろしくお願いします。 数学の問題です。教えて下さい。 問題は 「四面体OABCがあり、OA⊥OB、OB⊥OC、OC⊥OA、OA=√3、OC=√6、BC=√7を満たしている。 (1)AB=アであり、∠BAC=イウ°であるまた三角形ABCの外接円の半径は√エオ/カである。 (2)三角形ABCの面積はキ√ク/ケであり、点Oから平面ABCに垂線を下ろし、平面ABCとの交点をHとするとOH=√コ/サである。 (3)∠BACの二等分線と辺BCとの交点をDとすると、AD=シ√ス/セであり、cos∠OAD=ソ/タである。また、三角形ABCの内接円の中心をKとするときAK=チ√ツ-√テト/ナである。さらに、点Oから直線ADに垂線を下ろし、直線ADとの交点をLとするとKL=ニ√ヌネ-ノ√ハ/ヒである。」 です。 分かりづらいですがカタカナは答えの部分です。途中式と答えを教えて下さい。よろしくお願いします。 グラフの問題です。 OABCは平行四辺形である。 O(0、0) A(5,0) B(7,3) C(2,3) である。 直線Lは傾きがaで、点R(10,0)を通り、辺BCと交わる。 直線Lと辺OB,辺ABとの交点をP,Qとする。 四角形OAQPの面積と、三角形ARQの面積の比が、4:3となるときaを求めよ。 という問題です。 宜しくお願いいたします。 数学がわかりません 平面上に四点OABCがあり ↑OA+↑OB+↑OC=↑0、 OA=2 OB=3 OC=4 とする ↑ABの大きさは ? また△OABの面積は? 過程もお願いします 二次関数です。(大学受験生です。) こんにちは。 よろしくお願いいたします。 三角形ABCにおいて、面積は4、辺BCの長さは3であるとする。辺AB上の1点Pを通り辺BCに平行な直線が辺ACと交わる点をQとし、Pを通り辺ACに平行な直線と、Qを通り辺ABに平行な直線との交点をRとする。三角形ABCと三角形PQRとの共通部分の面積yをPQの長さxで表せ。次にこの関数のグラフをかけ。 なんですが、図形は書いたんです。 ですが、その後は。。。ぜんぜん分からなくて。 よろしくお願いいたします。 平面上に平行四辺形OACBがあり この平面上の点Pに対してOP↑=sOA↑+tOB↑の形に表す s、tが関係式5s+2t=3を満たしながら変わるとき、Pはある定直線上を動く その直線と二辺OA、BCとの交点をそれぞれA'、B'とする 線分A'B'上の点Pを通り、二辺OA、OBのそれぞれに平行な2直線をl、mとし、l、m、OA、OBで定まる平行四辺形の面積をSとする 点Pが線分A'B'上を動くとき、Sを最大にするような点Pについて、OP↑をOA↑とOB↑を用いて表せ 解き方を教えてください 数学 中3 三平方の定理、黄金比 学年末で解けない問題があり、解説も答えもなしで自力で解け、とのことです 問題は 1問目 写真をのっけておきました 僕はBHが2√5、ということしかわかりませんでした 2問目 黄金比の問題です。AB<ADの長方形ABCDで、辺AD上の点P、 辺BC上の点Qをとり、正方形ABPQをつくります。このとき、長方形ABCD∽ 四角形DPQCとなりました。 辺ADは辺ABの何倍か求めなさい これは何もわかりませんでした 3問目 AB=14、BC=15、AC=13の△ABCがあります。 この三角形の面積を求めなさい AからBCに垂線を引くと三平方の定理で56/5 15×56/5×1/2で84cm²であっていますか・・・? 4問目 座標平面上にA(10.0)と関数y=1/3xのグラフ上を動く点Pがあります △OPAがOA=OPの二等辺三角形となる、 点Pのx座標をすべて求めなさい ただし、原点をOとする これも全くわかりませんでした わかるかたご回答お願いします 高校数学 図形と方程式 XY平面上に、Y=-X^2+2で表される曲線CとY=-3Xで表される直線Lがある。 (1)CとLとの交点P,Qの座標を求めよ。 (2)C上の点RがPからQまで動くとする。三角形PQRの面積が最大になるときの点Rの座標を求めよ。 この問題だけがどうしてもわからず。。。orz 解説よろしくお願いします。 二次関数(2)です。(大学受験生です。) こんにちは。 よろしくお願いします。 三角形ABCにおいて、面積は4、辺BCの長さは3であるとする。辺AB上の1点Pを通り辺BCに平行な直線が辺ACと交わる点をQとし、Pを通り辺ACに平行な直線と、Qを通り辺ABに平行な直線との交点をRとする。三角形ABCと三角形PQRとの共通部分の面積yをPQの長さxで表せ。次にこの関数のグラフをかけ。 で、なぜ、3/2で場合わけしなければならないか、なぜ3/2がでてくるのかが分かりません。 相似とかは分かるんですけど。 よろしくお願いいたします。 平面上に平行四辺形OACBがあり この平面上の点Pに対してOP↑=sOA↑+tOB↑の形に表す s、tが関係式5s+2t=3を満たしながら変わるとき、Pはある定直線上を動く その直線と二辺OA、BCとの交点をそれぞれA'、B'とする 線分A'B'上の点Pを通り、二辺OA、OBのそれぞれに平行な2直線をl、mとし、l、m、OA、OBで定まる平行四辺形の面積をSとする 点Pが線分A'B'上を動くとき、Sを最大にするような点Pについて、OP↑をOA↑とOB↑を用いて表せ Sがt|OB↑|*s|OA↑|が最大のとき最大になるらしいのですが何故ですか? 受験生です。数学の問題がわからなくて困っています 数学の時間に出されたプリントの問題がわからなくて困っています。 もう中学校は卒業してしまい、先生にも会えなくなって、答えのプリントも配られていないので、答えがわかりません。家族に聞いても、わからないようで、困っています。 問題は、 図で、A、Bはそれぞれ関数y=-x+12のグラフとx軸、y軸との交点、Cはx軸上の点である。Pは線分OB上の点、Qは直線CPと線分ABとの交点である。また、Sは線分OA上の点で、四角形CSQRは長方形である。点Cの座標が(-3、0)のとき、次の問いに答えなさい。 問い 四角形CSQRが正方形になるときの点Sのx座標を求めなさい。 この問いは四つ目で、その前に出てきた三つの問いとその答え↓ ※私が求めた答えなので、合っているかはわかりません。 (1)CP=PQとなるときの点Qの座標を求めなさい。 A,(3、9) (2)点Aを通り、直線BCに平行な直線の式を求めなさい。 A,y=4x-48 (3)三角形BQPの面積が三角形BCPの面積の2倍になるとき、直線CPの式を求めなさい。 A,y=3x+9 もし答えてくれる方がいれば、よければ求め方も教えてくださるとうれしいです。 よろしくお願いします。 図は画像を見てください。 数学Iこの問題お願いします 数学Iこの問題お願いします AB=5、BC=4、CA=3である直角三角形ABCがある。 この三角形に面積が3分の8である長方形PQRCが内接している とき長方形の短い辺のながさを求めよ。 (AC上にP AB上にQ BC上にR )です お願いします