• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:次の問題がわかわないので教えてください。)

複素数ZとZ(√3+i)の関係を示しなさい

このQ&Aのポイント
  • 複素数ZとZ(√3+i)の関係を示すためには、ZをZ(cos30+isin30)と表現することができます。これはZを正方向に30度回転させたグラフになることを意味しています。
  • 極形式を使うと、複素数Zにはr(cosθ+isinθ)という形で表現することができます。rを求めると、√3^2+i^2=2からr=√2となります。
  • しかし、cosθ=(√2/√3)とsinθ=(-√2/√3)であるため、現在の計算結果と合いません。どのように考えるべきか分かっていません。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

> r^2 = √3^2 + i^2 で r = √2と なりました。 複素平面を実二次空間と考える場合には、{ 1, i } が基底となる。 √3 + i は、ベクトル 1 にスカラー √3 を掛けたものと ベクトル i にスカラー 1 を掛けたものの和 (√3)・1 + 1・i だと考える。 その長さは、√{ (√3)^2 + 1^2 } = 2。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • 178-tall
  • ベストアンサー率43% (762/1732)
回答No.1

Z(√3+i) は二つの複素数 Z と √3+i との積、らしいですね。 まず、 >r^2=√3^2+i^2でr=√2 は誤算です。  r^2 = √3^2 + 1^2 で r^2 = 4 つまり、r = 2 。 Z = Re^(iθ) として、  Z(√3+i) = Re^(iθ) * 2e^(i30°) = (2R)e^{i(θ+0°)} (Z を正方向に30°回転させ、長さ R を 2 倍する)     

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 複素数の極形式のマイナスがつく場合についてです。

    複素数の極形式のz=r(cosθ+isinθ)、r=lzl、θ=argz にてcosθとisinθの頭にマイナスがついても(例:z=r(cosθーisinθ)やz=r(ーcosθ+isinθ))それは複素数の極形式といえるんですか?

  • 複素数 正三角形

    複素数で正三角形の頂点を求めたら、60°回転のとき、-60°回転のときで、答えが逆になりました。問題は 複素数平面上の3点z1=3+5i,z2=1-3i,z3=1-i をそれぞれP,Q,Rとするとき、次の点を表す複素数を求めよ。(2)正三角形PQTの頂点T というものです。 自分は i)60°回転のとき T=1-3i+{3+5i-(1-3i)}{cos60°+isin60°} = 1-3i+1+√3i+4i+4√3i^2 =2-4√3+(1+√3)i と答えを出したのですが、教科書の解答ではこの値は-60°回転のときの答えで、 教科書の解答の、60°回転の値は、自分の-60°回転のときの値になりました。 自分の計算間違いや、回転の向きの間違い、その他間違っている箇所を訂正してください。お願いします。

  • 数学 極形式 問題

    z=r(cosθ+isinθ)のとき、次の計算をして、極形式で表せ。 (1)z+- z =r(cosθ+isinθ)+r{cos(ーθ)+isin(ーθ)} までは分かるのですが、答えが2rcosθになるのですが これはどういう風に計算した結果なんでしょうか?

  • 複素数の問題

    複素数が z^3=-10+9√3i を満たす時、zz*とz+z*を求めよ。 ただし、iは虚数単位、z*はzの共役複素数とする。 という問題です。 z=a+bi z=r(cosθ+isinθ) の2つのやり方でやってみましたが、どちらもうまく行きませんでした。 わかる方いらっしゃいましたら、ご指導お願いします。

  • 複素数

    複素数平面上で、z1=√6 +√2i ,z2=1+√3iが示す点をそれぞれp1,p2とし、また原点をOとする。このとき、Lp1 O p2 の大きさは□であり、△p1 o p2 の面積は□である 極形式で表すと z=r(cosθ+isinθ) で表すと z1 = √6 +√2i = √2(√3+i) = 2√2(cos30+isin30) z2 = 1+√3i = 2(cos60+isin60) で面積の公式 S=absinθ はですが どのように求めるかわかりません。

  • 複素数平面

    2つの複素数α=-√3+i、β=1-iがあり複素数平面上に円C:|z-αβ|=r(0<r≦2√2)がある。偏角は0°以上360°未満。円C上を点zが動く時、zの偏角の最大値と最小値の差が120°であるとする。rの値を求めよ。また、このとき偏角が最小となるzをa+bⅰの形で表せ。 α=2(COS30°+iSIN30°) β=√2(COS315°+iSIN315°)と極形式で表した後はどのように考えればいいのですか。どなたか教えて下さい。

  • 数学 極刑式 問題

    z=1ー√6iの極刑式をz=r(cosθ+isinθ)とすると、r=√□、cosθ=1/√□ □に入る答えを教えてください

  • 複素数

    次の複素数を極形式で表せ。ただし、0°≦θ<360° z=1-(cosθ+isinθ) z=1-(cosθ+isinθ) =1-cosθ-isinθ =2sin^2θ/2-2isinθ/2cosθ/2 =2sinθ/2(sinθ/2-icosθ/2) =2sinθ/2{cos(90°-θ/2)-isin(90°-θ/2)} =2sinθ/2{cos(θ/2-90°)-isin(θ/2-90°)} となるそうです。 極形式で表せということは z=r(cosθ+isinθ)にもっていくことは分かるのですが、そのもって行きかたが分かりませんでした。 式の1行目から2行目は普通の展開ですよね。 2行目から3行目とそれ以降は何をしているのですか? すいませんが解説をお願いします。

  • 複素数の問題です。

    複素数αとβは, |α - 2| = 2, |β = 3i| = 1をみたす。ここで、z = α + β とおくと、点zの存在領域を福素数平面上に示せ。 上の問題ですが、以下のように解いた場合、参考書の解答と存在領域が異なったのですがどうしてこのようなことがおきるのでしょうか?ちなみに参考書はベクトルを用いています。 α = 2e^iθ + 1, β = e^iθ + 3i とおくと、 α = 2(cosθ + isinθ) + 2 = 2cosθ + 2 + 2sinθi β = cosθ + isinθ + 3i = cosθ + (sinθ + 3)i z = α + β = 2cosθ + 2 + 2sinθi + cosθ + (sinθ + 3)i = 3cosθ + 2 + (3sinθ + 3)i ここで、z = x + yi とおくと x = 3cosθ + 2 y = 3sinθ + 3 (x - 2)^2 + (y - 3)^2 = 9(cos^2θ + sin^2θ) = 9 ∴ 中心2 + 3i, 半径3の円周上

  • 作られた問題

    分からない問題があるのですが、実はこの問題は問題集など すでに問題として成り立っており答えも存在する問題ではなく ある人が短時間で作った問題なので、問題自体が間違っている 可能性も否定はできません(私の計算ミスなどにより解けない だけで、問題があっている可能性ももちろん大いにあります) 1、{(1+√3i)/(√2+√2i)}^2000 計算すると(2/√2)^2000*{(-1/2)+(√3/2i)}になりました。 問題製作者は先生なのですが、授業中に解いた(正しくは宿題で出た)問題も 2000乗でしたが、きれいに解けました。 やはりこの問題は地道に(2/√2)^2000を計算するしかないのでしょうか。 2、a=(1+i)/√2とするとき、1+a+a^2+a^3=0であることを示せ。 計算していくと、イコール0にならなかったので示せなかったのですが これは単なる私の計算ミスでしょうか。 ちなみに、a=cos45°+isin45°に直し、a^2=cos90°+isin90°などとして 最後にcos90°+isin90°=iに直して足し、解いていきました。 3、P={(i+√3i)/2}^n+{(-1-√3i)/2}^nの値を求めよ(nは正の整数) (i+√3i)/2、(-1-√3i)/2をそれぞれ極形式に直しました。 その後足して、ド・モアブルの定理を使い、nの場合分けをして 答えを出そうと思ったのですが、(i+√3i)/2はcos60°+isin60°、 (-1-√3i)/2はcos120°-isin120°になりました。 このあとどうすればいいのかが分かりませんでした。 たぶん問題の方は合っていると思うのですが、違ったらご指摘ください。 (私が作った問題ではありませんが・・・) もし問題が合っている場合は、それぞれの解き方を教えていただけると 幸いです。よろしくお願いいたします。