• ベストアンサー

複素数の問題です

Z=cos(360°/7)+isin(360°/7) (1)z+z^2+z^3+z^4+z^5+z^6を求めよ。 これは、等比数列とみて-1とでました。 (2)複素平面において、1,z,z^2,z^3,z^4,z^5,z^6があらわす点をP0,P1,P2,P3,P4,P5,P6とする。三角形P1P2P4tp三角形P3P5P6の重心をQ(α)、R(β)とおくとき、複素数α、βを求めよ。 (3)三角形P0QRの面積を求めよ。 (2)は、-1/6±(√7)/6i であっていますか?あっていなければ、答えを教えて欲しいです。 あと(3)がわかりません。解答の過程も教えてください。 どうぞよろしくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • mmky
  • ベストアンサー率28% (681/2420)
回答No.2

回答は出てますので余計な参考程度に 確かに便利な表記なんですが、複素数というと皆さん難しく考える傾向性がありますね。 質問のケースは円を7等分する点を表してますね。原点から円上の等分点に線を引いて出来る線(方向が違いますからベクトル線ですね。)の合算は0になりますね。 z+z^2+z^3+z^4+z^5+z^6+z^7=0 z^7=1 だから z+z^2+z^3+z^4+z^5+z^6=-1 z^7=1 はP0 ですがこれは原点からx軸上で1を数えた点ですね。 それから重心点は#1のあっているとのお墨付きがありますので、これはx軸に対象な点ですから計算すべき三角形(二等辺)をxy座標で表すと頂点(1,0), 他の二点がそれぞれ(-1/6, -√7)/6), (-1/6, +√7)/6), ですね。だから高さ(7/6) 底辺(√7/3)の三角形ですね。面積は、7√7/36  とか。 というようにxy座標でyにiがついてるだけと考えておけば今までの幾何学概念で解けますね。

ayakakaya
質問者

お礼

ご回答どうもありがとうございました!とてもわかりやすかったです。ありがとうございました!

その他の回答 (1)

  • mame594
  • ベストアンサー率42% (8/19)
回答No.1

(1)結果的には同じ式を使うのですが,z^7=1ですから,  z^7-1=0の左辺を因数分解してもいいと思います.-1でOK. (2)合っていると思います.同じ答えになりました.ただしiは分子に書かないと.  α+βとαβを出して,根と係数の関係から. (3)一般的に,原点,α,β(上の文字とは無関係)の3点があった時,  三角形の面積はαとβのなす角がargα-argβ=arg(α/β)ですから,  S=|α|・|β|・|sin arg(α/β)|/2になるので,Po基準にすればよいと思う.

ayakakaya
質問者

お礼

ご回答どうもありがとうございました!とてもわかりやすかったです。どうもありがとうございました!

関連するQ&A

  • 複素数

    複素数平面上で、z1=√6 +√2i ,z2=1+√3iが示す点をそれぞれp1,p2とし、また原点をOとする。このとき、Lp1 O p2 の大きさは□であり、△p1 o p2 の面積は□である 極形式で表すと z=r(cosθ+isinθ) で表すと z1 = √6 +√2i = √2(√3+i) = 2√2(cos30+isin30) z2 = 1+√3i = 2(cos60+isin60) で面積の公式 S=absinθ はですが どのように求めるかわかりません。

  • 複素数と図形

    複素数平面上に三点A(z),B(z^2)C(z^3)を取り、z=r(cosθ+isinθ)(r>0)とする。 三角形ABCがAB=ACの二等辺三角形となるとき、z全体の表す図形を求めよ。 この問題の解き方を教えてください。 計算過程もお願いします。 ※絶対値を使って、z=r(cosθ+isinθ)を使わずに解くのが簡単ですが、あえて、z=r(cosθ+isinθ)を使って解いてください。お願いします。

  • 複素数・数列の問題について

    次のような問題ですが、解けません。計算間違いだと思いますが、煮詰まったので、どなたか助けてください。 ------------------------------ ・複素数平面上に原点OとP1(1,0)を取る。P1から、長さ1/√2の、反時計回り45度に取った線分を引き、終点をP2とする。更に点P2から、長さ(1/√2)^nの、直線P1P2から反時計回り45度に取った線分を引き、P3とする。同様に線を引いていき、取る点を各々Pnとする。 (1).P5を求めよ (2).Pnの極限を求めよ ------------------------------ 解答では、Pn - Pn-1 は 公比 1.√2(cosπ/4 + i sin π/4) の等比数列 と書かれています。 問題文を見る限り、Pn = Pn-1 + (1/√2) Pn-1 (cosπ/4 + i sin π/4) の式であり、等比数列には見えません。 何が間違っているのでしょうか。 Pn=Pn-1 + (1/√2) Pn-1 (cosπ/4 + i sin π/4) (cosπ/4 + i sin π/4) = k として、

  • 複素数平面の問題なのですが

    複素数平面上で z0=(√3+i)(cosθ+isinθ) z1=4{(1-sinθ)+icosθ}/(1-sinθ)-icosθ z2=-2/z1 の表す点をそれぞれP0,P1,P2とする。(0°<θ<90°) 偏角は-180°以上180°未満とする。 この問題で|z0|=2,argz0=30°+θ |z1|=4,argz1=90°+θ また|z1|/|z0|=2,argz1/z0=60°,P1P0=2√3 は求めることができたんのですが次の問題がどうにも解けなくて困っています。 原点O,P0,P1,P2の4点が同一円周上にある場合を考える。このとき、∠OP2P1を考えると argz1-z2/z2=-○○°・・・(1) であるから、 ○cos2θ-○=0・・・(2) が成り立つ。 ここでz1-z2/z2を整理したときに8cosθ+isin2θ-1となることから、(1)の値は8と1が入るという予想が立ち そこから(1)の偏角が-90となるということは考えられるのですが、きちんとした考え方がわかりません。 どなたか、しっかりとした回答の根拠を教えていただけませんでしょうか?お願いします。

  • ベクトルの内積を複素数で表したい

    はじめまして。 複素平面上の点 0, z(1)=r(1)*e^iθ(1)=r(1){cosθ(1)+isinθ(1)}, z(2)=r(2)*e^iθ(2)=r(2){cosθ(2)+isinθ(2)} を考えます。 原点0からz(1)への2次元実ベクトル、 ( r(1)cosθ(1), r(1)sinθ(1) ) と、原点0からz(2)への2次元実ベクトル、 ( r(2)cosθ(2), r(2)sinθ(2) ) を考えます。 このとき、二つの2次元実ベクトルの内積 ( r(1)cosθ(1), r(1)sinθ(1) )・( r(2)cosθ(2), r(2)sinθ(2) ) を複素数z(1)、z(2)を用いて表したいのですが、どういった形になるのでしょうか? また、二つの複素数z(1)、z(2)の積 z(1)*z(2) をベクトルOz(1)、Oz(2)を用いて表したいのですが、どういった形になるのでしょうか?

  • 複素数の問題です。

    複素数αとβは, |α - 2| = 2, |β = 3i| = 1をみたす。ここで、z = α + β とおくと、点zの存在領域を福素数平面上に示せ。 上の問題ですが、以下のように解いた場合、参考書の解答と存在領域が異なったのですがどうしてこのようなことがおきるのでしょうか?ちなみに参考書はベクトルを用いています。 α = 2e^iθ + 1, β = e^iθ + 3i とおくと、 α = 2(cosθ + isinθ) + 2 = 2cosθ + 2 + 2sinθi β = cosθ + isinθ + 3i = cosθ + (sinθ + 3)i z = α + β = 2cosθ + 2 + 2sinθi + cosθ + (sinθ + 3)i = 3cosθ + 2 + (3sinθ + 3)i ここで、z = x + yi とおくと x = 3cosθ + 2 y = 3sinθ + 3 (x - 2)^2 + (y - 3)^2 = 9(cos^2θ + sin^2θ) = 9 ∴ 中心2 + 3i, 半径3の円周上

  • 複素数の問題について

    (1)z^5=1を満たす複素数zをすべて求め、複素平面に図示せよ。 (2)上記の解のなかで、複素平面で第一象限にあるものをωとあらわす、ω^4+ω^3+ω^2+ω=1となることを示し、ω+1/ωの値を求めよ。 (3)cos(2π/5)の値を求めよ。 (1)については1、e^(2πi/5)、e^(4πi/5)、e^(6πi/5)、e^(8πi/5)、となるのであろうということまでは本を読んでいてわかったのですが、(2)のω=e^(2πi/5)となるところ以降がわかりません。 どなたかわかるかた、よろしくお願いいたします。

  • 複素数平面の質問です

    複素数平面の質問です f(z)=z-z^3/3(さんぶんのいち、ぜっとさんじょう) z∈C、絶対値z=1 を複素平面に図示する事が出来ません u=cosθ-cos3θ/3 v=sinθ-sin3θ/3 から出せる事は分かったのですが、ここから図示が出来ません。 またこの2つの値を出す迄の計算過程が、恥ずかしながら公式等を参照してもよく分かりませんでした。 どなたか教えて下さい。宜しくお願いします。

  • 複素数

    複素数 z=a+ib を複素平面上で原点を中心として反時計回りに角度πだけ回転して得られる新たな複素数をz’とする。 z×zをa,bで表せ cosπ、sinπと行列を使うような気がします。詳しい解説お願いします。

  • 複素数

    次の複素数を極形式で表せ。ただし、0°≦θ<360° z=1-(cosθ+isinθ) z=1-(cosθ+isinθ) =1-cosθ-isinθ =2sin^2θ/2-2isinθ/2cosθ/2 =2sinθ/2(sinθ/2-icosθ/2) =2sinθ/2{cos(90°-θ/2)-isin(90°-θ/2)} =2sinθ/2{cos(θ/2-90°)-isin(θ/2-90°)} となるそうです。 極形式で表せということは z=r(cosθ+isinθ)にもっていくことは分かるのですが、そのもって行きかたが分かりませんでした。 式の1行目から2行目は普通の展開ですよね。 2行目から3行目とそれ以降は何をしているのですか? すいませんが解説をお願いします。