• ベストアンサー
  • 困ってます

dx を変数として扱える理由

高校の数学では、微分を次のように習いました。 y=f(x) ...f(x)はxの関数 yをxで微分することを次のように書く。 dy/dx=df(x)/dx 例えば y=f(x)=x^2+3x+4 なら dy/dx=2x+3 高校の授業で数学の先生の漏らした言葉に、 dx は、ひとつの変数と扱って計算してよい。 とすると dy=(2x+3)dx と書ける。 ここで積分の魔法をかけると ∫dy=∫(2x+3)dx y+A=x^2+3x+B (A,Bは定数) なんと、これはA,Bを B-A=4とすれば 最初のf(x)と一致してます。 このようなめちゃくちゃな話をそのまま信じるのも あれなので、こんな計算が許される理由を教えてください。

noname#91216
noname#91216

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数352
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

dy/dxとか、∫f(x)dx とかいう表記は、ライプニッツという人が考えたものなんですが、実際、不思議なほどよくできてますね。 dxとかdyという単体の記号が何を表わすのかというのは、いろんな解釈の仕方があって、まあ、数学の世界で一番よく使われているのは、大学で習う、微分幾何というものでの定義です。普通は、大学3年くらいで習うでしょうかね。(もしかしたら理学系じゃないと習わないかも) 実は、その前に大学1年くらいで、全微分っていうのを習うはずで、そのときには、dxなどの単体の記号が必然的にでてくるんですけど、そのときには、たいてい、その意味するところをちゃんとやらないまま、なんとなくで済ます場合が多いです。 というわけで、大学3年になるまで待って、としかいいようがないかな。 ただ、物理や工学の人なら、そんなことを気にせずに、ばんばん、そういう計算をやりますし、物理や工学の世界で出てくるような普通の世界の問題ならば、それで実際何も問題ないです。 ただ、とりあえず、そこに書いてあること自体は、微積分の基本定理(微分と積分が互いに逆演算である)そのものですね。 dy/dx=2x+3 の両辺をxで積分して ∫(dy/dx)dx = ∫(2x+3)dx で、左辺をyで置換積分した、と言うことなので、高校範囲でも理由は説明できますね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 数学は美しくできているので、 理解せずにdxを変数として 道具として使うというのは 論理の飛躍があり 自分は美しくなかったなぁ・・・と反省しております。 学生時代は、確率、行列、オレレーションズリサーチの 整数問題がほとんどで、微積分からはかなり離れた 世界にいました。

関連するQ&A

  • 多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計

    多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計算するには? xとyに関する多変数関数f(x,y)と、g(x,y)が与えられたとき、微分∂f/∂gを計算するにはどうしたらよいでしょうか?(そもそも偏微分なのだろうか?) 具体例で考えます。 f(x,y) = (x+2y)^2 g(x,y) = x+2y である場合。当然∂f/∂g = 2 gです。このような場合は問題ありませんが、 f(x,y) = x + 3y g(x,y) = x + 2y のような場合はどのように考えたらよいのでしょうか? 全微分の関係を使って考えてみました。 df(x,y) = (∂f/∂x) dx + (∂f/∂y) dy + O(dx,dy) = dx + 3 dy + O(dx,dy) dg(x,y) = (∂g/∂x) dx + (∂g/∂y) dy + O(dx,dy) = dx + 2 dy + O(dx,dy) ∂f/∂g = limit_{dx→0,dy→0} df/dg を考えれば良いのではないかと。 どの方向から極限をとっても極限値が変わらないと仮定して、 つまりdx = dyとして、極限を考えると。 ∂f/∂g = 4/3 とても正しいとは思えないのですが、他にどう考えればよいのかわからず悩んでいます。 そもそも、微分が存在しないと言うことなのでしょうか? 質問は以下の2点です。 (1)この様な場合、どのように考えていけばいいのでしょうか? (2)この様な微分に関して、数学的に何か名前があるのでしょうか?分野名など。 以上 よろしくお願いします。

  • dy = f'(x) dx の理由

    お世話になります。 高校数学で dy / dx = f'(x) = lim {h→0} {f(x+h) - f(x)} / h と習ったかと思います。これを変形すると dy = f'(x) dx ・・・(1) となります。 一方、テイラー展開の公式 f(x + h) = f(x) + f'(x) h + f''(x) h^2 / 2 +・・・ より Δy = f(x+h)-f(x) = f'(x) h + f''(x) h^2 / 2 +・・・ です。h → 0 の極限をとると dy = f'(x)dx + f''(x) dx^2 / 2 + ・・・(2) となるかと思います。 (1)と(2)が一致しないことについて、どう考えればよいでしょうか? ((1)が(2)の2次以上の項を無視した近似だとすると、 近似式で微分という分野がうまく回っている理由がよくわかりません。。 数学ではなく物理なら「実用上」2次以降の微小量を無視するのは わかるのですが。。) よろしくお願いします。

  • 積の微分の公式 (dfdg/dx)=0?

    y=f(x)×g(x)の微分は,(dy/dx)=(df/dx)g+f(dg/dx)だと思います。(微分そのまま+そのまま微分)と暗記しました。この公式の証明として,次のような説明を見付けました。 (y+dy)=fg+gdf+fdg+dgdf y=fgより dy=gdf+fdg+dgdf 両辺をdxで割ると (dy/dx)=g(df/dx)+f(dg/dx)+(dgdf/dx) よって,微分そのまま+そのまま微分が成り立つ。(右辺第3項 dgdf/dxですが,dgdfは微少量同士のかけ算ですから無視しているようです。) 質問1 右辺第3項は無視しても良いのでしょうか。 次に,右辺第3項を無視したまま,上記の式をxで積分したときに元に戻るかどうか試しました。 y=fgより,f=y/g g=y/f (dy/dx)=(y/f)(df/dx)+(y/g)(dg/dx) 積分記号(1/y)dy=積分記号(1/f)df+積分記号(1/g)dg log|y|=log|f|+log|g| log|y|=log|fg| y=fg  となり,元の原関数が導けました。 質問2 右辺第3項を無視したままxで積分して元に戻るかどうか試したのですが,元に戻りました。 私のした積分の計算はあっているのでしょうか。(右辺第3項を無視したまま計算を始めたことが気になります。)

その他の回答 (2)

  • 回答No.3

高校教程では、微分積分そのものが最初から魔法でしかないのだから、 そのような説明になってしまうのは、しかたがない。 今の標準的な大学教程でも、微積分の基礎はεδ論法に基づくから、 魔法が、タネのある手品に替わるだけだ。 dx を変数として扱える理由を、ライプニッツ流で素直に理解したいなら、 超準解析に基づく微積分の基礎づけが望ましい。 参考: http://www.junkudo.co.jp/detail2.jsp?ID=0191603324 絶版なので、ぜひ図書館で。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答、および書籍の紹介をありがとうございます。 多分、市町村の図書館では無いなと想っていますが、 大学の図書館は在籍中の学生にしか本貸さないですよね?

  • 回答No.2
  • KI401
  • ベストアンサー率53% (44/82)

dxをΔxの極限と考えればその話も「信じ」やすいんじゃない? 例えばdy/dxはΔy/Δxの極限。 微分方程式の変数分離形: f(y)dy = g(x)dx は、 f(y)Δy = g(x)Δx の極限だ。 適当な区間で和を取れば  Σf(y)Δy = Σg(x)Δx で区分求積の形なので、極限を考えて∫f(y)dy = ∫f(x)dx 上に書いたのはあくまで概略だから、きちんと数学的に同じことを言うなら、 x(t),y(t)みたいにtの関数にして  Δx→dx (Δt→0) って計算してみるといいんじゃないかな。 そもそも微分も積分も極限で定義されていて、dxなんてのは それを表すために都合が良いただの「記法」にすぎないんだから、 色々極限考えるときにも都合良く使ってしまえっ、ってことだわな。 あんまり「記法」に囚われない方が良いかと思われ。 # しかし"積分の魔法をかける"とはまたひどい教え方だな。 # 完全に「オマジナイ」か…… # ま、高校数学の段階ならそれでもいいって考えなんだろうなぁ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 高校ではd/dxをxで微分の演算子のように説明するため、 dxを変数と見てよいと言い直されると、話がちがうじゃんか という話になっているように想います。 偏部分の∂xと、普通の微分のdxは、何が本質的に違うの? という疑問を持ってる人もいるのではないでしょうか。 私もその組です。

関連するQ&A

  • 重積分の順序の交換

    非有界な関数f(x,y)を重積分(0≦x≦1,0≦y≦1)することを考えます。 具体的にはf(x,y)=(x-y)/(x+y)^3です。 この時、xで先に積分するか、yで先に積分するかで値が変わることはありますか? 僕が行った計算では、変数変換(x,z)=(x,x+y)とすると、ヤコビアンは1でdxdy=dxdzで、 ∫_0^1 dx ∫_0^1 f(x,y) dy =∫_0^1 dx ∫_x^{x+1} (2x-z)/(z^3) dz =∫_0^1 dx 1/(x+1)^2 = 1/2 zの積分はxを定数として計算しています。 ここで、逆の順序で積分すると、xとyの変数を入れ替えたものは等しいので、 ∫_0^1 dx ∫_0^1 (x-y)/(x+y)^3 dy =∫_0^1 dy ∫_0^1 (y-x)/(x+y)^3 dx = - ∫_0^1 dy ∫_0^1 (x-y)/(x+y)^3 dx =1/2 よって、 ∫_0^1 dy ∫_0^1 (x-y)/(x+y)^3 dx = -1/2 だと思うのです。 また、直感的には、交代式を直線x=yに対称な領域で積分するなら、 ∫_0^1 dx ∫_0^1 (x-y)/(x+y)^3 dy = 0 が正しいとも思えます。 どうかこの辺の事情をお教えください。

  • 変数分離法で積分するときの積分変数について質問です。

    変数分離法で積分するときの積分変数について質問です。 例えば、dy/dx=yという式を変数分離法で解く時、両辺にdxをかけて、両辺をyで割って、1/ydy=dxという形にして両辺を積分します。このとき、教科書を見ると「∫1/ydy=∫dx+C」となっており、積分定数がついています。 積分の定義は「∫f(x)=F(x)+C」のように、積分を行ったものに積分定数がつくと習いました。しかし、変数分離の式「∫1/ydy=∫dx+C」では積分を行う前に積分定数がついています。これはなぜなのでしょうか?どなたかわかる方がいらっしゃいましたら教えてください。

  • dy/dx・dxは置換積分を使ってdy?

    次の微分方程式を解け 2yy'=1 とありました。解答は -------------------------------- 2y・dy/dx=1の両辺をxで微分して ∫2y (dy/dx) dx=∫dx 置換積分法により ∫2y dy=∫dx ゆえに y^2=x+C (Cは任意定数) -------------------------------- となっています。ここで疑問に思ったのが ”置換積分法により”という箇所です。 これはdy/dx・dxを”約分して”dyにしてはならず、 ”置換積分法により”dyにしなくてはならない、 ということが言いたいのだと解釈しました。 疑問1. そこで、ここにおける”置換積分”とは具体的には どのような作業を指すのでしょうか? 疑問2. 以下は全て同じことを表現したいと意図している のですが、誤解を招くことはないでしょうか? 2y・dy/dx・dx    2y (dy/dx)・dx   2y dy/dx dx 2ydy/dx dx 2y*dy/dx*dx 2yとdyの間に半角スペースを入れた方がよいか ・と*と半角スペースどれが妥当か dy/dxは()でくくるべきか などなどです。

  • 陰関数についての計算

    陰関数:f(x,y) = x^2 + xy + y^2 - 36 = 0 があって、 導関数:dy/dxを求める問題なのですが、 途中でつまづいてしまっているので質問させていただきます。 計算途中で2変数関数 の全微分df (x, y)を求め、それぞれdxとdyについてまとめることが小問としてあるのですが、dxとdyについてまとめろとはどういう計算をすれば求まるのでしょうか? 全微分はdf = (2x+y)dx + (x+2y)dyとなりここから どのように展開すればdxとdyについてまとめたことになるのでしょうか? 書籍では、全微分を求めた後、df=0として全微分を展開していき、 dy/dxを求めていて、途中でdx、dyについてまとめる過程は出てきていないので、書籍を参考にできずOKwaveで質問させていただきます。 よろしくお願いします。

  • 偏微分

    偏微分を用いて、全微分をするとき 例えばx,y,zの時間に依存する変数からなる関数f(x,y,z)を時間で全微分する時、 df/dt=(df/dx)(dx/dt)+(df/dy)(dy/dt)+(df/dz)(dz/dt) となると思うのですが、 仮に、x,を時間だけでなく、もう一つ時間に依存する関数n(t)を与えるとします、 つまり X=x+n(t) f(x) => f(X)=f(x+n(t)) になるとします。 その時、時間の全微分はどうなるのでしょうか? f(x+n(t))はxとn(t)に依存しているので、f(x,n(t))と書いて f(x+n(t))=f(x,n(t)) df(x+n(t))/dt=(df(x,nt)/dt)=(df/dx)(dx/dt)+(df/dn)(dn/dt) としてもいいんでしょうか? 後どのような時、偏微分しても可能なのか教えて頂ければ幸いです。 どなたか分かる方よろしくお願いします。

  • あってますか??

    d^2y/dx^2-dy/dx-6y=0,y(0)=1,y`(0)=0のとき、dy/dx=zとおくと、dz/dx=z+6yになる。yを求めよ。っていう問題で、 d/dx=Dっておいて(D^2-D-6)y=0 だから(D-3)(D+2)y=0 よって(D-3)y=0または(D+2)y=0 (D-3)y=0はdy/dx-3y=0でdy/dx=3y だからdy/y=3dx 両辺積分すると、logy=3x+C (Cは積分定数) y=e^(3x+C) M=e^Cとおくと y=Me^3x 同様にy=Ne^(-2x) あわせて、y=Me^3x+Ne^(-2x) y(0)=1,y`(0)=0より M=2/5,N=3/5 よってy=2/5e^3x+3/5e^(-2x) あってますか?? 変なところあったら教えてください>< 問題文の方法使ってないような気がするんですけど だめなんでしょうか?? 連立微分方程式を使うやり方がわかる人は 教えてください!!!

  • 関数の導関数を求める方法(合成関数の微分を用いる方法)

    次の関数の導関数を求める問題なのですが、 以下の解き方であってるでしょうか? (1) f(x) = (2x+1)^3 f(x)=u^3, u=2x+1とおき、合成関数の微分を用いる。 公式 (dy/dx)=(dy/du)・(du/dx)より、 f'(x)=(dy/du)=3u^2 (du/dx)=2 ∴(dy/dx) = (dy/du)・(du/dx) = 3u^2・2 = 6u^2 = 5(2x+1)^2 (2) g(x)=1/(x^2+x+1) f(x)=u^(-1), u=x^2+x+1とおき、合成関数の微分を用いる。 公式 (dy/dx)=(dy/du)・(du/dx)より、 g'(x)=(dy/du)=u^(-1) (du/dx)=2x+1 ∴(dy/dx) = (dy/du)・(du/dx) = u^(-1)・(2x+1) = (x^2+x+1)^(-1)・(2x+1) = (2x+1)/(x^2+x+1)

  • 変数分離法の計算

    問題を2つ解いたのですが解答がでません。どこが間違っているか教えてもらえないでしょうか? 一つ目はこの前に質問して回答を見て納得し、自分でやって答えも出たのですが今やってみると解答と違っていました dy/dx=(1-y^2)/(1-x^2) dy/(1-y^2)=dx/(1-x^2) 部分分数にして両辺を積分すると log((y-1)/(y+1))=log((x-1)/(x+1))+logC logをはずして計算をすると y=(1-C+Cx)/(1+C-Cx) になるのですが解答は y=(x+C)/(1+Cx) になってました。積分定数の置き方が違うと思うのですがお願いします もう一つは (2x^3-y^3)ydx-x(x^3-2y^3)dy=0 dy/dx=(y/x)*(2x^3-y^3)/(x^3-2y^3) =(y/x)*(2-(y/x)^3)/(1-2(y/x)^3) y/x=u と置いて dy/dx=u+xu' よって u+xu'=u*(2-u^3)/(1-2u^3) 1+(x/u)u'=(2-u^3)/(1-2u^3) (1/x)dx=((1-2u^3)/u*(1+u^3)du 左辺を積分して 左辺=logx 右辺は部分分数にすると 右辺=(a/u+b/(1+u)+c/(1-u+u^2))du a=1 b=-3 c=-3より 右辺=1/u-(3/(1+u))-(3/(1-u+u^2))du ここで-(3/(1-u+u^2))の積分ができません 両方とも計算の仕方が間違っているのでしょうか?

  • 微分方程式  積分方程式 について

    微分方程式y'=x+1について、 解は、 dy/dx=x+1 変数分離を行って、 dy=(x+1)dx 両辺を積分すると、 ∫dy=∫(x+1)dx・・・(※) よって、 y=1/2x^2+x+C (※)の部分ですが、これは積分方程式と 言っていいのでしょうか? 積分方程式って、何なんでしょうか? Wikipediaを見たのですが、わかりませんでした・・・ 以上、ご回答よろしくお願い致します。

  • 微分方程式

    微分可能な関数f(x)が, ∫[0~x]f(t)dt=x^3-3x^2+x+∫[0~x]tf(x-t)dt をみたしている. このとき, f(x)を求めよ. 与式の左辺をF(x), 右辺をG(x)とおくと, F(x)=G(x) ⇔ F'(x)=G'(x) かつ F(a)=G(a)となるような定数aが存在するー(※) F(0)=G(0)=0より, (※) ⇔ F'(x)=G'(x) h'(x)=f(x), g"(x)=f(x)とすると ∫[0~x]tf(x-t)dt=[-tf(x-t)][0~x]+∫[0~x]F(x-t)dt=-xF(0)-g(0)+g(x) より,与式の両辺をxで微分すると, f(x)=3x^2-6x+1+F(x)-F(0)=3x^2-6x+1+∫[0~x]f(t)dtー(1) 再びxで微分して, f'(x)=6x-6+f(x) f(x)=yとおくと, dy/dx=6x-6+y 6x+y=uとおくと, dy/dx=du/dx-6より, du/dx=u u≠0のとき,  du/u=dx ⇔∫du/u=∫dx ⇔log|u|=x+c (c:積分定数) ⇔u=±e^(x+c) ⇔y=±e^(x+c)-6x (1)にx=0を代入して,f(0)=1 ⇔ ±e^c=1 ⇔ c=0 ∴y=±e^x-6x また, u=0のとき, y=-6xより,(1)に代入すると, -6x=3x^2-6x+1-3x^2 ⇔ 0=1となり, いかなるxについてもこれは成り立たず不適. ∴f(x)=±e^x-6x 添削お願いします.