• ベストアンサー

有界数列の収束半径

問題 {an}が有界数列ならば、Σ(0,∞)an z^nの収束半径R≧1を示せ が分かりません。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

こんばんは。分からなければ収束半径の定義に戻りましょう。 収束半径は 1/R = limsup_{n→∞}|a_n|^(1/n) {a_n}が有界数列より、適当な正数Kが存在して |a_n|≦K (for all n) ゆえに、 1/R = limsup_{n→∞}|a_n|^(1/n)   ≦limsup_{n→∞}K^(1/n)   =lim_{n→∞}K^(1/n)   =1 よって、R≧1

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • fusem23
  • ベストアンサー率18% (72/383)
回答No.1

an が定数なら、 Σ(0,∞)an z^n = anΣ(0,∞) z^n ですよね? z^n は等比数列ですので、その和が収束する条件は分かるはずです。 あとは、{an}が有界数列であることを使えば、an を何かに置き換えて、不等式が成り立ちます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 収束するから有界??

    数列Anが収束するので、lim(n→∞)An=0 より、{An}は有界であるとあったのですが、どうしてそうなるのでしょうか?また{An}が有界だとどうして{An+1}も有界なのでしょうか?教えてください。

  • 有界であることの証明

    数列{An},{Bn}が収束するとき Cn=An(nは偶数),Bn(nは奇数) として数列{Cn}が有界であることを証明せよ。 という問題がわかりません。ε-δ論法を使うのでしょうか? 教えてください。お願いします。

  • 収束半径の求め方

    Σ[0,∞]nz^(n^2) の収束半径を求める問題なのですが,いまいちよく分かりません。 コーシーの収束判定法で求めるため, まず一般項anを出そうと思い どのように変形したら Σ[0,∞]an*z^n の形になるかを考えているのですが 一向に思い浮かびません(汗) どなたかご教授してして下さるかた、お願いいたします。。

  • 数列 1/(n+1)+1/(n+2)…1/(n+n) の収束について

    ----------------------- 数列{an}を an=1/(n+1)+1/(n+2)…1/(n+n) とする。ただしn∈Nとする。 (1)この数列は収束する。 (2)n→∞のとき、0≦an≦1となる。 ----------------------- を示したいのですが、どのように導けばよいのかさっぱり解りません。 (1)で、この数列が収束することは単調増加することと下に有界であることから示せました。 (2)は解けずにいるのですが、疑問点があります。 n=1のときに、a1=1/2となり、数列が単調増加をすることから、0≦anということは有り得ないのでは?と思うのですが…。 このことと、大雑把な道筋を教えてください。 細かい計算は自力でやりたいので…。

  • 収束半径の問題です

    収束半径を求める問題なのですが,答えを知りたいので質問しました. 画像にも載せたのですが、 Σ(-1)^n an xn (ak+1=1, ak+2=2, ak+3=3)の収束半径を知りたいです. ちなみに、自分は、anの部分を(n+1)で計算してr=1になりました。あってるのでしょうか。

  • 数列の収束、有界など

    数列a(n)=1+1/1+1/2!+1/3!…+1/n!について (1){a(n)}は単調増加を示せ。  解: a(n+1)-a(n)=1/(n+1)!-1/n!>0 ⇒a(n)<a(n+1) (2)上に有界を示せ。 (3)収束することを示せ。 (1)は自力で解けたのですが、(2)(3)が分かりません。 申し訳ないのですが、分かる方は教えて下さい。よろしくお願いします。

  • 数列の収束

    次のような問題です。 a_1=1,a_n+1=1/(1+a_n)の漸化式で定まる数列を考える。 このとき数列a_nが収束することを示せ。 こんな問題なのですが、分かりそうでわかりません。 実際、順に書き並べていくと分子・分母がフィボナッチ数列になり一般項は求められないこともないですが、複雑すぎてここから収束性を示すのは難しいと思います。 また、この数列は有界なことは分かりましたが単調数列じゃないので収束性は示せませんし・・・ だれか分かるかたいましたら解答お願いします。

  • 極限の問題(収束半径、広義積分)です。

    解いていて、つまずいている問題があります。どうか分かる方お力添え下さい。 (1)Σ(√(n+1)-√n)x**n の収束半径? 補足(Σの添え字nは0から∞です)   (**は2乗を示しています)   (√は()の中にかかっています) ダランベールの収束判定法から 収束半径r=lim(x→∞)an/an+1にしたがって解こうとしてのですがそこで詰まりました。 (2)Σan*(x**n)とΣn*an*x**(n-1)の収束半径が同じであることを示せ。 補足(Σの添え字nは0から∞です)   (**は2乗を示しています)   (*はかけ算を示しています)    (anは数列です) ダランベールで解こうと思ったのですがxの肩のn-1が定理と違うのでこれ以上進みません。 (3)∫sin(1/x)dx(0<x≦1) ∫(x(x-1))**(-1/3)dx(2≦x<∞) ∫1/xdx(-1≦x≦1) は収束、発散? 広義積分なので∫の中の関数より大きい関数で押さえれば収束が示せると思ったのですが適当な関数が見つかりません。

  • 数列の収束について

    コーシー列である数列{(n,1/n)}と{(n,1/n^2)}が0に収束することを証明せよという問題です。どちらも定義 任意の(どんな小さな)ε>0に対して(でも)、     | an -α|<ε/2 (n≧N )                を満たす自然数Nが存在する。 を使って証明しようと思ったのですが、anに1/nと1/n^2を、αに0を入れてから先にいけません。どなたか詳しい方なるべく詳しく教えてください。宜しくお願いします。    

  • 一様収束について教えてください

    整数nで添字づけられた数列(an)n=-∞から∞ についてnを限られた範囲で各項の絶対値を取って考えた部分和Σ(n=-MからM)|an| がM→∞としたとき有界だとする。(つまりΣ(n=-∞から∞)anが絶対収束している) このとき関数列fm(x)=Σ(n=-mからm)ansin(nx)が一様収束していることを説明せよ という問題です nやmを右下に小さく表示する記号がわからず 読みにくくてすいません どなたかわかる方教えてください

このQ&Aのポイント
  • DCP-7065DNの両面印刷時に片面が汚れるトラブルについての解決方法や原因を教えてください。
  • Windows10で有線LAN接続しているDCP-7065DNの両面印刷時に片面が汚れる問題が起きます。解決方法を教えてください。
  • DCP-7065DNの両面印刷に関するトラブルで片面が汚れることがあります。原因や対処方法を教えてください。
回答を見る