• ベストアンサー
  • すぐに回答を!

数列

A1=√2,An+1=√(2+An)の数列について(nは正の整数) (1)An<3を示せ。 (2)An+1-AnとAn-An-1は常に同符号であることを示し、それよりAn<An+1を示せ。 (3)□に入る言葉と数値を答えよ。   数列Anは(1)(2)より□かつ□であるので収束する。その極限値は□である。 という問題なのですが、(3)の極限値は計算して求めることができましたが、(1)(2)の示し方がわかりません。 どなたかわかる方がいたら教えてください。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

(1)は普通に帰納法でいいのでは?A1<3は成立。An<3と仮定してAn+1=√(2+An)<√5<3 (2)もAn+1-An>0を普通に帰納法で示せば良いのでは。(A2-A1>0は成立。An-An-1>0と仮定すると、(An+1)^2-(An)^2=An-An-1 >0よりAn+1-An >0 ) #1さんが言われているのもそういう事なんですけど、はっきり帰納法と打ち出した方が解答を見る人には分かりよいと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

参考になりました。ありがとうございます。

その他の回答 (1)

  • 回答No.1

(1)について「任意のx<3に対して√(2+x)<3」を示せば初項の条件より従います。√(2+x)<√(2+3)=√5<3より明らかです。 (2)についてはA[n+1]^2-A[n]^2=A[n]-A[n-1]と左辺の因数分解から従いますね。A[n]>0に注意しましょう。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数列の極限問題

    a,bを2つの正の定数とし、数列{an},{bn}を次のように帰納的に定義します。 a1 = a, b1 = b, an+1 = (an + bn)/2, bn+1 = √(an x bn) (n = 1,2,...) このとき、 (1) a >= bならば   a1 >= a2 >=....>= an >=...>= bn >=.....>= b2 >= b1 が成り立つことを証明してください。 (2)数列{an},{bn}は同じ極限値に収束することを証明してください。 よろしくお願いします。

  • 減少数列と極限

    ある減少数列(an≦an-1となる数列かつ詳細なanの式は出せない)がありかつすべてのnについてan≧bとなる実数がある時その数列のn→∞の極限は収束すると言えますか?例外があるかわからなくなりました

  • 数列です。わからなくて困っています。教えてください。

    数列です。わからなくて困っています。教えてください。 次の問題です。 整数からなる数列{an}を漸化式 a1=1、a2=3、an+2=3an+1-7an(n=1,2,3、・・・) で定める。 an が偶数となるnを決定せよ。

  • 数列です。わからなくて困っています。教えてください。

    数列です。わからなくて困っています。教えてください。 次の問題です。 整数からなる数列{an}を漸化式 a1=1、a2=3、an+2=3an+1-7an(n=1,2,3、・・・) で定める。 an が偶数となるnを決定せよ。 nは3の倍数のときにanが偶数になると予想でき帰納法を用いるのだと教えていただいたのですが、その帰納法の立て方がわからず、教えていただけないでしょうか。普通どおりに立ててもうまくいかず困っています。どうかよろしくお願いします。

  • 数列 1/(n+1)+1/(n+2)…1/(n+n) の収束について

    ----------------------- 数列{an}を an=1/(n+1)+1/(n+2)…1/(n+n) とする。ただしn∈Nとする。 (1)この数列は収束する。 (2)n→∞のとき、0≦an≦1となる。 ----------------------- を示したいのですが、どのように導けばよいのかさっぱり解りません。 (1)で、この数列が収束することは単調増加することと下に有界であることから示せました。 (2)は解けずにいるのですが、疑問点があります。 n=1のときに、a1=1/2となり、数列が単調増加をすることから、0≦anということは有り得ないのでは?と思うのですが…。 このことと、大雑把な道筋を教えてください。 細かい計算は自力でやりたいので…。

  • 【様々の数列】

    分母が6で分子が正の整数である既約分数を、 小さい順に並べた数列{an}とする。 このとき、a10は? an=295/6のときnは? また、a120は? {an}の初項から第120項までの和は? 答え a10=29/6 n=99 a120=350/6 和 3600 解ける方いらっしゃいましたら 解説お願いしますm(_)m

  • 微分積分の問題です。実数列{an}は、単調増加で上

    微分積分の問題です。実数列{an}は、単調増加で上に有界であるものとする。... 実数列{an}は、単調増加で上に有界であるものとする。この{an}の上限をαで表す。したがって、 ・任意の自然数nに対してan ≦ αが成り立ち、 ・任意の自然数eに対してaN > α-e となる自然数Nが存在する。 以下の3つの設問に答えよ。 (1)数列{an}の極限値はαであること、すなわち、任意の整数eに対し、n > Nのときには|an-α| < e となる自然数Nが存在することを示せ。 (2)数列{an}は、an = 1 - 1/n であれば単調増加で上に有界となることを示せ。 (3)設問(2)で与えた数列{an}の極限値αを求めよ。このαに対し、n > N のときに|an-α| < 0.001を満たす最小の自然数Nを計算せよ。 この問題の解説をどなたかよろしくお願いします。

  • この数列は発散しますか?詳しい方、教えてください!

    こんにちは。 数III、勉強しはじめたばかりで、極限のところでうーん、なのですが。 数列anの部分和が極限で収束するとき、数列anは0になる、 と教科書に書いてあります。 でも、何かの拍子に見た覚えがあるのですが、 an=(√(n+1)-√n )の部分和ですが、どう考えても、打ち消し合って、 (teres~とか先生がおっしゃっていましたが)発散すると思うのですが、an は0に収束するんじゃないかと思います。ひょっとして(  )のあるなしで 変わるのでしょうか? もしかすると、anは0に収束するけど、発散する、ということですか? これはどのように考えたらいいですか?もしかすると高校では扱えないよう な話なのでしょうか。詳しい方、よろしくお願いします!

  • 幾何学の問題が分かりません。

    幾何学の問題が分かりません。 何冊も参考書を見たのですが・・。 お手数ですが、ご回答いただけると助かります。 自然数の集合Nから実数の集合Rへの関数f:N→Rに対して、自然数nの像f(n)をanとする。 a1、a2、・・an、、an+1・・、 を数列といい、{an}で表す。 Q.次の問いについて、真であるものは証明を、偽であるものは反例を挙げよ。 (1)数列{an}の部分列{a2n}、{a2n-1}が同じ極限値に収束すれば、{an}も収束する。 (2)数列{an}の部分列{a2n}、{a3n}が同じ極限値に収束すれば、{an}も収束する。

  • 数列の問題です

    2の倍数でも3の倍数でもない正の整数を、小さい方から順に並べてできる数列を{an}とする。 (1)a11を求めよ (2)aN=187となる正の整数Nの値を求めよ。またこのときのNの値に対して、数列{an}の初項から第N項までの和を求めよ。ちなみに答えは(1)は31で、(2)がNが63、和が5953です。(1)はわかったのですが(2)の解法が、わかりません。どなた教えてください。宜しくお願いします。