• ベストアンサー
  • 困ってます

位相空間の定義に関する疑問

位相空間の定義: 集合Sが次の条件を充たす集合族をもつとき「位相空間」とよぶ 1. 空集合と、S自体がその集合族に属する 2. 集合族に属する集合の交わりが集合族に属する 3. 集合族に属する無限個の集合の和集合が集合族に属する というのがありますが、1番目の条件は当然として、2番目と3番目の条件で、どうして2は有限個の集合の交わりで定義され、3だけが無限個の集合の和集合で定義されているのかわかりません。例えば、2の条件を「集合族に属する無限個の集合の交わりが集合族に属する」と書き換えるのはどうしてだめなんでしょうか?(具体的に、ちょうど良い例などが浮かばずに困っています。)

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数107
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

graphmanさん、今晩は。 定義がおかしいです。 2は、単に交わりと書けば無限個の交わりも含みますが、位相の正しい定義では有限個の交わりであって、無限の場合は含みません。 3は、逆に有限、無限のどちらでも良いので、「無限個の」と言う限定は取り除く必要があります。 有限と無限の違いを認識されていないようですが、次の例で違いがわかりますか? 実数全体の集合Rに通常の位相(ユークリッド位相)を入れる。 このとき、開区間は開集合である。 自然数nに対し開区間I_nをI_n=(0,1+1/n)で定めるとき、有限個のnに対するI_nの交わりは開集合であるが、全てのnに対するI_nの交わりは(0,1](1以下の正の実数の全体)であり開集合でない。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

graphaffineさん。有り難うございました。 例で確認して見たところ、理解することができました。説明も非常に簡明で、とても分かり易かったです。ありがとうございます。

関連するQ&A

  • 位相

    数学科2年のものです。 位相空間についての授業が始まったのですが、演習問題で、わからない問題があります。 初歩的な問題かもしれませんが、どなたか解答お願いします。 集合S={1,2,3,4}に部分集合族Lを L={Φ、{1}、{1,2}{1,3}{1,2,3}、S} により与える。Sの部分集合{1,2,4}をTとおく。 (1)(S,L)は位相空間であることを示せ。 (2)位相空間(S、L)においてTの内部を求めよ。 (3)位相空間(S、L)においてTの閉包、境界を求めよ。 特に(1)の位相空間の定義の、「Lに属する任意個の和集合がLに属すること」の確認の仕方に自信がないので、お願いします。

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 位相空間

    位相初心者です。次の問題がよく分かりません。 問.実数直線R1の位相をTとする。   BをTに各無理数についてそれだけを元とするRの部分集合を   すべてつけ加えたRの部分集合族     B=T ∪ {{x}:x∈P}   とする。このBにおいて生成されたR上の位相T_Mに対して、   位相空間(R,T_M)をMで表す。     このMについて、次を求めよ。(証明付きで。)  (1) i(Q)、i(P) (iは内部を表す。)  (2) Qの閉包、Pの閉包 (1)は、Qは有理数全体の集合だから、Qに含まれるMの開集合全体の 和集合は、Φ となる。 (2)も同様に、Qを含むMの閉集合全体の共通集合はQである。 こんな感じでいいのでしょうか。もっと適当な証明があれば、 教えてください。

  • 位相の問題です。

    位相の問題です。 (X,Q)、(X,Q'):位相空間 X×Y={(x,y)|x∈X,y∈Y} Qx×y:=U×V{U∈Q,V∈Q'の形の任意個のX×Yの部分集合の和集合} ここで (X×Y,Qx×y):位相空間になることを示せ。 わかる方いましたらよろしくお願いいたします <(_ _)>

  • 位相の定義ついて

    位相の定義ついて 質問させていただきます。 定義の仕方は参考書等で異なるということは理解していますが、私の持っている参考書には以下のように記載されています。 (定義)-- 集合XとXの部分集合族Oについて、Oが次の条件を満たしている場合、OをX上の位相と呼ぶ (O1) Xおよび空集合0はOの元である (O2) Oの任意の部分集合Т'に対して、Т'の元の和集合がOの元である    すなわち、    ∪{T:T∈Т'}∈O    が成り立つ (O3) Oの任意有限個の元T_1,T_2,・・・,T_nに対してそれらの共通集合がOの元である    すなわち、    ∩{T:i = 1,2,・・・,n}∈O    が成り立つ -- ここで、疑問があります。 (O2)は以下のように言い換えることはできますか? (O2) Oの任意有限個の元T_1,T_2,・・・,T_nに対してそれらの和集合がOの元である    すなわち、    ∪{T:i = 1,2,・・・,n}∈O    が成り立つ (O3)は以下のように言い換えることはできますか? (O3) Oの任意の部分集合Т'に対して、Т'の元の共通集合がOの元である    すなわち、    ∩{T:T∈Т'}∈O    が成り立つ 「Oの任意の部分集合Т'の元」 と 「Oの任意有限個の元T_1,T_2,・・・,T_n」 の違いが良く分かっていないのです。。。 どなたか、良い具体例などを交えて、分かりやすく解説していただけませんか? 教科書だけ読んでいるとうまくイメージできません。。。

  • 位相空間について

    次の問題がわかりません。。 実数の集合Rにおいて、次の部分集合族Oを考える。 まずR,φ∈Oである。 U≠R,φのとき、U∈O⇔U=R-A(A:有限集合)と定義する。 (1)Oが開集合系であることを示せ (2)写像f:(R,O)→(R,O) f(x)=x^2は連続であることを示せ。 (3)写像g:(R,O)→(R,O) g(x)=sin x は連続ではないことを示せ。 (1)については ()R、φ∈Oは定義よりOK ()U1、U2∈O⇒U1∩U2∈Oは無限集合の積集合は無限集合 ()Wλ∈O⇒∪Wλ∈Oは無限集合の和集合は無限集合 な感じでよろしいでしょうか? (2)はf(x)に値域が0≦f(x)≦∞であるから任意のU∈Oに対してf‐1(U)は無限集合 (3)はg(x)の値域が-1≦g(x)≦1であるから任意のW∈Oに対してg‐1(W)は有限集合 みたいな感じでよろしいのでしょうか? 解答や書き方がわからなくて困ってます・・・

  • 位相空間の質問です

    テストにむけてどうしてもわからないところがあります (X,O)を位相空間とする 点a∈Xの近傍全体の集合族をaの近傍系といいN(a)で表す また点aの開近傍全体の集合族をaの開近傍系といい、No(a)で表す (1)a∈X ⇒ X∈No(a)⊂N(a) (2)N∈No(a) ⇒ a∈N N∈N(a) ⇒ a∈N (3)N∈N(a)、N⊂M⊂X ⇒ M∈N(a) この1,2,3を示したいです 教えてください

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。