• 締切済み
  • すぐに回答を!

位相について初心者なのでよろしくお願いします。

実数全体の集合Rの二つの部分集合族θ1={U⊂R|R-Uは有界集合}、θ2={U-R|0はRに入らない}に対して、θ=θ1∪θ2としたとき(空集合φは有限集合とする。)にθがRの位相空間であることを定義に基づいて行うときに、一つ目のX∈θかつφ∈θ(φは空集合)は明らかだと分かったのですが、残りの2つの導き方がイマイチ分かりません。 導き方を教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数38
  • ありがとう数1

みんなの回答

  • 回答No.1
  • koko_u_
  • ベストアンサー率18% (459/2509)

>θ2={U-R|0はRに入らない} は多分誤りなので訂正を補足にどうぞ >残りの2つの導き方がイマイチ分かりません。 丸投げしすぎです。もう少しがんばりましょう。これも補足にどうぞ。

共感・感謝の気持ちを伝えよう!

質問者からの補足

θ2={U-R|Rに0は入らない} がたぶん正しいと思います。使いたい記号がないのでこんな表現になってしまったのだと思います。 θ1とθ2がそれぞれ位相だというのはわかるのですが、 その和集合が想像できなくて・・・ どんな感じのものになるんですかね?

関連するQ&A

  • 位相の問題です

    Rに整数を境界とする開空間とその和集合と、空集合を開集合系を考える。 Rの部分集合がこの位相に関してコンパクトであること、有界であることは同値であることを考えています。 コンパクト⇒有界はわかったのですが、有界⇒コンパクトであることをどのように考えていけばいいのかわかりません。 よろしくお願いいします。

  • 位相についてのご質問です。

    位相について質問です。 「集合Sの部分集合族Kが (1)O(空集合)、SがKに含まれる (2)集合A,BがKに含まれるならAとBの共通集合もKに含まれる。 (3)任意のKの元Fmに対してFmの全和集合もKに含まれる。 以上を満たす時,KはSに位相を与えるといい(S,K)を位相空間という。 そして、Kの元を開集合といいKを開集合系という。」 このKの元を開集合といいという所からさっぱり分かりません。 どこがどう開集合なんですか? 例えばS={1,2,3}とすればK={O,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} となってこれは(1)から(3)を満たすので(S,K)は位相空間でKの元は開集合にもなってないと思うのですが。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • わからない教えてください。位相数学

    http://oshiete1.goo.ne.jp/qa2672839.htmlで質問したものです。位相数学でわからないことがあります。教えてください 松坂和夫の集合・位相入門(44刷)の第4章についてわかりません。 甲) p152にこんなことが書いてあります。ただ、ここにQに似た文字が出てきて、Qを横にしたものがでてきます。いかこのQをよこ向きにしたものをQと表記します。またфの表記は本当はこれではありません。なんかみたことない記号です。似ているこのфで代用します。φは空集合のきごうです。 Sを一つの空でない集合とする。Sの部分集合系(すなわちф(S)の部分集合系)が次の3条件をみたすとき、QはSにひとつの位相構造を定める。あるいは簡単に、QはSにおける一つの位相であるという。 Oⅰ)S∈Qおよびφ∈Q Oⅱ)Ο1∈Q、Ο2∈QならばΟ1∩Ο2∈Q Oⅲ)(Ολ)λ∈∧ をQの元からなる任意の集合族(すなわち、添数集合∧は任意の有限または無限集合で、すべてのλ∈∧に対してΟλ)とすれば∪Ολ∈Q  と表記されています。なおΟλというのはΟλのλは添え字でちっちゃいです。Ο1も同様に数字は添え字です。正直書いてある意味がわかりません。これは定義だとおもうのですが。考えたのですが、前の質問の ”空でない集合Xの位相Oとはなにか”でXがSに対応して、OがQに対応するんですか? 乙) (S、Q)を一つの位相空間とする。以下これをSと書く。この位相空間の閉集合系をΨとする。 Q∩Ψ={S、φ}であるとき、位相空間Sは連結である。と明記されていますが、これも意味がわかりません。 この二つの事柄について教えてもらえないでしょうか?具体的な事例を示してもらえれば納得できるかも。

  • 位相

    数学科2年のものです。 位相空間についての授業が始まったのですが、演習問題で、わからない問題があります。 初歩的な問題かもしれませんが、どなたか解答お願いします。 集合S={1,2,3,4}に部分集合族Lを L={Φ、{1}、{1,2}{1,3}{1,2,3}、S} により与える。Sの部分集合{1,2,4}をTとおく。 (1)(S,L)は位相空間であることを示せ。 (2)位相空間(S、L)においてTの内部を求めよ。 (3)位相空間(S、L)においてTの閉包、境界を求めよ。 特に(1)の位相空間の定義の、「Lに属する任意個の和集合がLに属すること」の確認の仕方に自信がないので、お願いします。

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • lim[x→∞]f(x)の位相での定義は?

    よろしくお願い致します。 『0<∀ε∈R,0<∃δ∈R;0<|x-a|<δ⇒|f(a)-f(x)|<ε』 は 『2つの位相空間(X, T)、(Y, S) と map f;X→Y と L:={b∈Y;∀ε∈nbhd(b),∃δ∈nbhd(a) such that f(δ)⊂ε}(a ∈X)に於いて、 L≠φ の時、f(x)はLに収束するといい limf(x):=L x→a と表記する。そして、L=φの時、f(x)は発散すると言う』 という具合に一般で定義できると思います。 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 に就いては、 『Bは位相空間(X*,T*)の部分集合Aの開被覆である』 の定義は 『T* の部分集合Bに於いて、A⊂∪[b∈B]b』 『位相空間(X*,T*)の部分集合Aはコンパクトである』 の定義は 『X* の部分集合Aの任意の開被覆B(⊂T*)に対し、∃{b1,b2,…,bn} ⊂B (n∈N) such that A⊂∪[i=1 to n]bi』 『位相空間(X*,T*)はコンパクト空間をなす』 の定義は 『位相空間(X*,T*)の部分集合X* はコンパクトである』 『位相空間(X,T)が位相空間(X*,T*)の中で稠密である』 の定義は 『X⊂X* 且つ φ≠∀A∈T* に対して,A∩X≠φ』 『位相空間(X*,T*)は位相空間(X,T)のコンパクト化である』 の定義は 『X* はコンパクト空間 且つ XはX* の中で稠密である』 従って、『x→∞』の定義は『xをa∈X* に近づける』を意味す るので εとδを使うと、 2つの位相空間 (X,T)、(Y,S) と map f: X → Y があり、位 相空間(X*,T*)は(X,T)のコンパクト化である時、 L:={b∈Y;∀ε∈nbhd(b,(Y,S)),∃δ∈nbhd(a,(X,T)) such that f(δ)⊂ε}(a∈X*)に於いて、 L≠φ の時、f(x)はLに収束するといい lim f(x):=L x→a と表記し、 L=φの時、f(x)は発散すると言う。 例:実数体RではX*はR∪{+∞,-∞}に相当し、a∈{+∞,-∞} と定義してみたのですが、 どんな位相空間(X,T)やコンパクト化(X*,T*)では良いという訳ではなく、 夫々に何らかの条件を付け加えねばならないような気がします。 どのような条件を付ければ 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 の一般での定義が完成しますでしょうか?

  • この問題においてとてもよく疑問に思ったのです

    「Sを位相空間として、Mを部分集合とする。このとき (M.).=M. (ただしM.はMの内部とする)を示せ」という問題ですが Sを位相空間として、Mを部分集合とする。というのとMを空でない集合とする。というのとどう違いますか? イマイチこの問題においては「Mを空でない集合とする。このとき (M.).=M. (ただしM.はMの内部とする)を示せ。」と書いても同じなのではないかなと思います。 まず普通に(M.).=M. (ただしM.はMの内部とする)を示すに当たってもSが位相空間だとか使わないので。ぜひお願いします!

  • 位相空間の定義に関する疑問

    位相空間の定義: 集合Sが次の条件を充たす集合族をもつとき「位相空間」とよぶ 1. 空集合と、S自体がその集合族に属する 2. 集合族に属する集合の交わりが集合族に属する 3. 集合族に属する無限個の集合の和集合が集合族に属する というのがありますが、1番目の条件は当然として、2番目と3番目の条件で、どうして2は有限個の集合の交わりで定義され、3だけが無限個の集合の和集合で定義されているのかわかりません。例えば、2の条件を「集合族に属する無限個の集合の交わりが集合族に属する」と書き換えるのはどうしてだめなんでしょうか?(具体的に、ちょうど良い例などが浮かばずに困っています。)

  • 位相の問題です。

    位相の問題です。 (X,Q)、(X,Q'):位相空間 X×Y={(x,y)|x∈X,y∈Y} Qx×y:=U×V{U∈Q,V∈Q'の形の任意個のX×Yの部分集合の和集合} ここで (X×Y,Qx×y):位相空間になることを示せ。 わかる方いましたらよろしくお願いいたします <(_ _)>