• ベストアンサー

積分

定積分 -∫xexp(-x/N) dx を0から∞までの定積分はどうやるのでしょうか。 N:定数 ∫xexp(-x/N) dx=x^2/2 ・exp(-x/N)  +1/N∫exp(-x/N) dxですか

  • taktta
  • お礼率72% (1031/1430)

質問者が選んだベストアンサー

  • ベストアンサー
  • age_momo
  • ベストアンサー率52% (327/622)
回答No.2

部分積分は (fg)'=f'g+fg' ⇒ fg'=(fg)'-f'g ⇒ ∫fg'=fg -∫f'g です。f=x, g'=exp(-x/N) と考えたならg=-1/N exp(-x/N), f'=1です。 これを代入してください。慣れるまでははっきりfが何で、g'が何にするか、 ならばf'とgがどうなるかを別途書き出したほうがいいのではないですか。 もちろん、どちらをf,g'にするかは微分して簡単になる方をfにするのが 基本ですよ。

その他の回答 (1)

  • N64
  • ベストアンサー率25% (160/622)
回答No.1

重複質問ですか?

関連するQ&A

  • 定積分

    -∫xexp(-x/N) dx を0から∞までの定積分はどうやるのでしょうか。 N:定数 ∫xexp(-x/N) dx=x^2/2 ・exp(-x/N)  ー1/N∫exp(-x/N) dxですか

  • 定積分

    -∫xexp(-x/N) dx を0から∞までの定積分はどうやるのでしょうか。 N:定数 ∫xexp(-x/N) dx=x^2/2 ・exp(-x/N)  ー1/N∫exp(-x/N) dxですか

  • 簡単な微分方程式がとけない!!

    一階微分方程式を解いたのですが、検算であいません。どこがおかしいのでしょうか? (d/dx-n/x+1/n)y=0 ⇔dy/dx=(n/x-1/n)y ⇔1/y dy/dx=n/x-1/n (yで割って、変数分離) ⇔∫dy/y = ∫(n/x-1/n)dx (xで積分) ⇔Log(y) = nLog(x)-x/n+c (cは定数) ⇔y=c' exp(n) xexp(-x/n) (c'=exp(c)) yは求まります。しかし検算すると、 dy/dx =c' exp(n) exp(-x/n)-c'/n exp(n) xexp(-x/n) となり、 (n/x-1/n)y=(n/x-1/n)c' exp(n) xexp(-x/n)      =c' exp(n){nexp(-x/n)-1/n xexp(-x/n)) =c' exp(n) nexp(-x/n)-c'/n exp(n) xexp(-x/n) となって、n倍異なる部分があります。どこが間違いなんでしょうか?私はまったく矛盾に気が着ませんが、間違っているように見えます。どなたか知恵を貸してください。

  • この式は積分できるでしょうか

    定積分 ∫[0~n](sqrt(x)/exp(x))dx は計算可能でしょうか?

  • x^n (1/xを含む)の微積分の求め方

    x^n(1/xを含む)の微積分の求め方で、1/xだけexpを使って積分しこれだけlog(x)となりますが、共通的にならないか・・・ということで、すべてexpで置換たらいいのではということで考えました。おおむね下記のような考えで丈夫でしょうか? 頭のリフレッシュということで30年ぶりに数学を再勉強中です。よろしくおねがいします。 A) x^n積分 x^n=exp(k) と置換 x=exp(k/n), k=log(x^n)=nlog(x) なので ∫1/x^n dx = ∫(1/exp(k)) dexp (k/n)/dk dk = ∫exp(-k)exp(k/n)/n dk = ∫exp(k(1-n)/n)/n dk ここで n=1 の場合は ∫(log(1),log(x)) exp(0)/n dk = ∫(0,log(x)) dk = log(x) ∫1/x dx = log(x) n=1 以外の場合は = (1/(1-n)) exp(k(1-n)/n) = (1/(1-n))exp((1-n)log(x)) = -(1/(n-1)) exp(-(n-1)log(x)) = -(1/(n-1)) exp(-log(x^(n-1))) ∫1/x^n dx = -(1/(n-1)) (1/x^(n-1)) n=-nと置換えると ∫x^n dx = (1/ (n+1)) x^(n+1) B) 微分も同じように x^n=exp(k) と置換 x=exp(k/n), k=log(x^n)=nlog(x) なので dx^n/dx = dexp(k) /dx = (dexp(k) /dk)(dk/dx) = exp(k) dlog(x^n)/dx = exp(k) n dlog(x)/dx = exp(k) n (1/x) x^n=exp(k) なので = n x^n /x^-1 = nx^(n-1)

  • 数III 定積分

    In=∫[0→π/2] sin^n xdx, Jn=∫[0→π/2] cos^n xdx  (n=0,1,2…)とする。 In=Jnを示せ。 cosx=sin(π/2-x) だから、 π/2-x=t、 dx=dt x:0→π/2 t:π/2→0 定積分の値は積分定数の取り方によらない。つまり、 Jn=∫[π/2→0] sin^n tdt = ∫[π/2→0] sin^n xdx=In これで合ってますか?

  • ガウス積分??

    ∫[-∞→∞](x^n)*exp(-α*(x^2))dx (n、αは定数) の計算の仕方が分からず困っています。 どなたか出来る方、どうかよろしくお願いします!

  • 積分が分かりません

    houmonnと申します。この積分が分からなくてかなり困っております。解き方が分かる方だけでなく、こうやればいいのではと感じた方も書き込みしていただければ、すごく助かります。よろしくお願いいたします。 式は ∫exp(-A/x)dx の定積分で範囲がa~bまでです。

  • 積分の証明問題を解いて下さい

    n≧2のとき ∫logx dx <log n 定積分の範囲はn+1/2, n-1/2です

  • 非有界区間の積分と極限

    ∫[0,∞]e^(-x^2)dx=√π/2 を示すために e^x>x+1(x≠0)(x=0での一次近似) より 両辺にx=x^2とx=-x^2を代入すると 1-x^2<e^(-x^2)<1/(1+x^2)……(1) (1)のそれぞれのグラフの形に留意しながら定積分の値を定めて それぞれをn乗してから定積分しても大小関係は変化しないので ∫[0,1](1-x^2)^ndx<∫[0,∞]e^(-nx^2)dx<∫[0,∞]1/(1+x^2)^ndx ここで x=cosθと置換すると ∫[0,1](1-x^2)^ndx=∫[0,π/2]sin^(2n+1)θdθ x=1/tanθと置換すると ∫[0,∞]1/(1+x^2)^ndx=[0,π/2]sin(2n-2)dθ また I_n=∫[0,π/2]sin^nθdθ は1≦nにおいて I_2n=π/2・1/2・3/4・5/6・7/8…(2n-1)/2n=πΠ[k=1,n](2k-1)/2k I_(2n+1)=1・2/3・4/5・6/7・8/9…2n/2n+1=Π[k=1,n]2k/(2k+1) となる。 更に √n・x=yとおくと ∫[0,∞]e^(-nx^2)dx=1/√n∫[0,∞]e^(-y^2)dy なので 求める定積分は √n・I_(2n+1)<∫[0,∞]e^(-x^2)dx<√n・I_(2n-2) ここまでは自力でたどり着いたのですが lim[n→∞]I_(2n+1)→√π/2 が示せなくなってしまいました。。。 これさえ示せれば証明できるのですが。。。 どなたかご教授お願いします。