• ベストアンサー

微分積分

Az=(μI)∫-∞から∞(1/√(Zの2乗+r1の2乗)-(1/√(Zの2乗+r2の2乗) dzを計算しようとして、 ∫-∞から∞(1/√(Zの2乗+r1の2乗)の(1/√(Zの2乗+r1の2乗)を tと置いて置換積分しようとしたのですが、 Zの2乗+r1の2乗=t 2zdz=dt dz=(1/2z)dt としたのですが、 積分範囲が z ┃ ー∞ →  ∞    ーーーーーーーーーーーーー t┃ ∞  →  ∞ ∞から∞になってしまいました。 この場合どうなるのですか? ご回答お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
noname#50894
noname#50894
回答No.2

>なぜ、t=z+√(z^2+r^2)}なるのですか? 所謂、定石なのでしょうね。 この置き方は、答えを見透かしたような置換積分であるのは事実です。 理科系の学部であれば、1学年の解析学でこの方法は必ず習うと思います。 例えば、解析概論(改訂第三版)であれば、p.124辺りに載っています。

razio915
質問者

お礼

わかりました。 ありがとうございました。

その他の回答 (2)

noname#50894
noname#50894
回答No.3

=ついでですから、計算も= 不定積分を行うと ∫{1/√(z^2+r1^2)-(1/√(z^2+r2^2)}dz =log[{z+√(z^2+r1^2)}/z+√(z^2+r2^2)}] となり、 z→∞のときの値が0 z→-∞のときの値が-2*log(r2/r1) A=2μ*log(r2/r1) となると思います。 違っていたら。ご容赦下さい。

noname#50894
noname#50894
回答No.1

∫{1/√(z^2+r^2)}dz は ・t=z+√(z^2+r^2)}とおいて解く ・z=r*sinh(t)とおいて解く のいずれかが、一般的です。 この場合は、前者の方が簡単です。

razio915
質問者

補足

ありがとうございます。 なぜ、t=z+√(z^2+r^2)}なるのですか?

関連するQ&A

  • 複素積分

    複素積分の問題です。 ∫z*cos(z)dz 積分路:|z-i/2|=1/2のRez≦0の部分をiから0の向き z(t)=1/2cos(t)+(1/2)*i*(sin(t)+1/2)、t∈[π/2,3π/2]で変換して z(t)=(e^it)/2+i/4として代入してみると ∫{(e^it)/2+i/4}cos{(e^it)+i/4}*{i(e^it)/2}dt 積分範囲はt:π/2→3π/2 となりました。 この積分の計算がなかなかうまくいかず行き詰ってしまって困っています。 そもそも方針は合っているのでしょうか…? どなたかわかる方おられましたら回答お願いいたします。

  • 積分

    わからない問題があるのですが、 (1) 実数ζ<=0 をパラメータとする有理型関数 f(z) =exp(-iζz)/(1 + z2) ; z2∈ C を考える.実軸上の線分C1 = [-R;R] とRe^iθ (0<=θ<=π) で表される半円C2 からなる閉曲線に反時計回りの向きを入れた積分路をC とする.ただし,R > 1 は定数であるとき、 ∫f(z)dz = πexp(ζ) を示せ. (2)ζ<= 0 のとき ∫[-∞,∞]exp(-iζt)/(1 + t^2) dt =πexp(ζ) を示せ. (3) ζ > 0 のとき ∫[-∞,∞]exp(-iζt)(1 + t^2) dt を求めよ. という問題で、(1)は積分すればいいような気がしたのですが、わかりません。 どなたかよろしくおねがいします。

  • 複素積分の解き方がわかりません

    円周 |z - 1| = 1 上で反時計回りに複素積分を行い、 ∫( z^n / (z - 1)^n )dz の値を求めよという問題がわかりません。 |z - 1| = 1より、 C : z = 1 + exp(iθ) であり、線積分の公式 ∫{C} f(z)dz = ∫{a→b} f(z(t))z'(t) dt (ただし、{}は積分範囲) という公式を当てはめると、 ∫{π→0} ( (1 + exp(iθ))^n/(exp(iθ))^n ) × iexp(iθ) dθ と考えたのですが、この積分を解くことができません。それとも、それ以前で間違えているのでしょうか? わかる人がいれば詳しく教えていただけるとありがたいです。回答よろしくお願いします。

  • 複素積分、積分路に関する問題が解けなくて困っています。

    複素積分、積分路に関する問題が解けなくて困っています。 来年大学院受験です。 問題は http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/10math-j.pdf の第2問です。 (1)不定積分はすぐに解けるのですが、 (2)の積分経路はどうしていいかわかりません。 自分の途中までの回答としては、 (1)はtan^(-1)x + C, (1/2)*log(x^2+1) + C (2)はS1,S2,S3,S4の経路をそれぞれ z(t)=1+it (-1≦t≦1) z(t)=-t+i (-1≦t≦1) z(t)=-1-it (-1≦t≦1) z(t)=t-i (-1≦t≦1) とし、それぞれtで微分すると、 dz=idt dz=-dt dz=-idt dz=dt となり、それぞれ、 I_1 = ∫(-1~1) 1/(1+it-(a+ib)) * idt I_2 = ∫(-1~1) 1/(-t+i-(a+ib)) * -dt I_3 = ∫(-1~1) 1/(1+it-1-it-(a+ib)) * -idt I_4 = ∫(-1~1) 1/(t-i-(a+ib)) * dt という風に表せると思いますが、 ここでI_1は定積分すると log|(i+1-a-ib)/(-i+1-a-ib)|となりましたが、このままでいいのでしょうか? 何かもう少し変化させたりとかできないのでしょうか? 少々行き詰ってしまったので、指標をいただければ嬉しいです。 よろしくお願いいたします。

  • 複素線積分についての質問です。

    複素線積分についての質問ですが、∮z二乗の dz、C;z=(1+i)t、tの範囲が0 から1で求めると値はどうなるでしょうか?答えと過程を教えてください。  

  • 複素積分について

    ∫[0→2π]dθ/(a+bcosθ)の値を求めよという計算です。 z=exp(iθ)とおくと、、 またcosθ=(1/2)(z+1/z)となるので、 この積分は、 2/i∫1/(bz^2+2az+b)dz となり、bz^2+2az+b=0の根が特異点となるので、 その根をα、βとおくと、 2/i∫1/(z-α)(z-β)dzとなったのですが、 答えを見ると、 2/ib∫1/(z-α)(z-β)dz となっています。 分母にbがあるのですが、このbはどっからきたのでしょうか?

  • 複素関数の周積分の問題です。

    問題は次の二つです。  ∫dz/(z-3i) 積分経路は |Z|=π で反時計まわり。  ∫(exp(z)/z)dz 積分経路は |Z|=2で反時計と|Z|=1で時計まわり。  初めの問題はコーシーの積分定理を使えば2πiになるのは、理解できるのですが、積分定理を使わずに与えられた積分経路で積分をしていった所(z(t)=πexp(it)とした。)、[log|πexp(it)-3i|] tの区間0~2π となりこれを計算すると0になってしまいました。なぜ答えが違うのでしょうか。 二番目の問題もコーシーの積分定理を使って二つとも同じ原点を中心とした半径rの円の積分経路に置き換えれば、0になることはすぐわかるのですが、定理を使わずに計算していった所∫iexp(exp(it))dtや∫iexp(2exp(it))dtといった項が出てきてこれが計算できないのです。この問題は大人しく定理を使わなければ解けない問題なのでしょうか。 以上の2点が分からず困っています。どなたかお力をお貸しください。 よろしくお願いします。

  • 計算について質問です!

    計算について質問です! ∫dz/(r^2+z^2)^(3/2)で積分範囲は -Rから Rについてなのですが、置換して解いてみたのですがうまくできませんでした(・_・; ご回答よろしくお願いしますm(_ _)m

  • 積分と全微分

    D(t)=-∫[-B(z)]exp{-∫[r(u)du]}dz 一つ目の積分区間は[t,∞] 二つ目の積分区間は[t,z]とする。 を全微分すると、答えはdB(t+s)+{exp∫[r(u)du]}dB(t)=0 この積分区間は[t,t+s]が解決できなくて、大変------こまっております。 ご存知の方、ヒントでもかまいませんので、 お教え頂けますでしょうか。 どうぞ宜しくお願いします。

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。