• ベストアンサー

積分における置換の際の積分範囲は?

現在、「積分」の分野を勉強していますがわからない問題があります。これは大学受験用問題です。どなたかおわかりになる方がいらっしゃれば教えていただきたいと思います。宜しくお願いいたします。 問題は たとえば、 Cosx=t(元のxの積分範囲が0→πのとき)と置換したとき、 -sinxdx=dt tの積分範囲は、1→―1でしょうか?それとも、-1→1でしょうか。 また Sinx=tと置換したとき(元のxの積分範囲が0→πのとき) Cosxdx=dt このときtの積分範囲は、 0→1ですか?それとも、1→0でしょうか? これによって答えもかわってくると思うのですが、、やっぱり0→1なんでしょうか? 基本的には元の範囲が0→πのとき、置換後の範囲は、 (0に対応するt)→(πに対応するt)ということでいいのでしょうか。 お答えとその理由を教えていただきたいです。 私の勉強不足なのですが質問する人がいないため、困っています。どなたかご存知の方がいらっしゃれば、教えていただきたいと思います。また説明不足の点があれば補足させていただきますので宜しくお願いいたします。

  • goodo
  • お礼率84% (1270/1500)

質問者が選んだベストアンサー

  • ベストアンサー
  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.7

何度もすいません。 (α≦x≦βにおけるgの値域をg(α≦x≦β)と書きます) ・fがg(α≦x≦β])上で連続 ・gがα≦x≦β上でC^1級(⇔微分可能で導関数が連続) を満たす時、(gの単調性は必要ない) ∫[x:α→β]f(g(x))g'(x)dx=∫[t:g(α)→g(β)]f(t)dt が成り立ちます。 つまり、 置換する前の被積分関数をf(g(x))g'(x)と表した時に、上の条件を満たしていれば、 積分区間をx:α→βからt:g(α)→g(β)とする と考えて、問題は起こりません。 ∫sinxdxをt=sinxで置換する例は、 t=1=sin(π/2)において、fに相当する関数が、t=1(=sin(π/2))で不連続(むしろ未定義)なので、上の式が成り立たなくても、問題はありません。 (※この後は、いろいろと引っかかる所をごまかしつつ書いているので(ぉぃ)、間違ってるかもしれませんm(_ _)m) ところで、置換積分にはもう一種類あります。上に書いたのは、t=g(x)で置換した場合ですが、x=h(s)で置換することもありますよね。この場合の公式(?)は、 ∫[x:γ→δ]f(x)dx=∫[s:h^(-1)(γ)→h^(-1)(δ)]f(h(s))h'(s)ds こんな感じになると思います。 (まぁ、これは、最初の置換積分で、右から左に変形したものと考えられますが) 右辺の積分区間にh^(-1)が登場します。なので、hが逆関数を持つ、つまり、単調である必要があります。 置換前の積分区間で、hが単調でなければ、積分区間が単調となるように分割する必要があると思います。 さて、 Sinx=tで置換する場合の質問ですが、これは、前者のパターンの置換ですよね。 なので、私は、0→0でよいと思います。(もちろん、最初に書いた条件を満たしていれば。高校の範囲なら、大抵の場合、満たしているでしょうが) まぁ、どっちの置換の時が単調じゃないとダメだったのか混乱しそうですので、どっちの置換の時でも、単調な区間に分割した方が、安全かもしれません。 (分割しないといけない、って方が、多数派のようですので、私が書いた事を鵜呑みにしないほうがよい気もします) あと、 >「sinxが単調でないから」ではなく、「tanxがx=π/2で定義されていないから」だと思いますが、いかがでしょうか? 「定義されていないから」ってのも違う気がしてきました。 ∫sinxdxの被積分関数(=sinx)を f(g(x))g'(x)の形で書くと、(g(x)=sinxです)cosxの正負で場合分けをする必要がでてきます。 だから、[0,π/2],[π/2,π]で分割する必要があるのではないでしょうか?(∫[-1→2]|x|dxを求める時に、[-1,0],[0,2]に分割して考えるのと似た考えだと思います) cosxの正負で場合分けをする必要がある理由の大元を辿ると、sinxが単調じゃないから、なのかもしれませんが、単調でないからといって、必ず分割の必要性が出るわけではありません(しかも、そのような例はいくらでもあります)。 なので、少なくとも分割する理由は、「単調でない事」以外に、あると考えるべきではないでしょうか? あるいは、「単調でない、かつ、○○だから」のような理由なのかもしれませんが。 長文&乱文で失礼しました。

goodo
質問者

お礼

度々のご意見をありがとうございました。置換というのは結構単純かと思っていましたが・・・。みなさんにいただいたご意見を参考にさらなる練習問題にとりくみたいと思います。長い間お付き合いいただきありがとうございました。

その他の回答 (6)

  • tarame
  • ベストアンサー率33% (67/198)
回答No.6

積分範囲が、[x:0→π]の定積分を t=sinx と置いて、 (1) [t:0→0]とするのも (2) [t:0→1]とするのも 間違いです! 積分範囲を、 [x:0→π/2]と[x:π/2→π]と分割して [t:0→1] と [t:1→0] とします。

goodo
質問者

お礼

御回答ありがとうございます。 やはり分割するのがよいようですね。

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.5

#1+#3です。 f(t)の原始関数の1つをF(t)とします。t=g(x)として、 (d/dx)F(g(x))=f(g(x))g'(x) より、F(g(x))はf(g(x))g'(x)の原始関数の1つ。よって、 ∫[x:α→β]f(g(x))g'(x)dx=F(g(β))-F(g(α)) 一方、 ∫[t:g(α)→g(β)]f(t)dt=F(g(β))-F(g(α)) 以上より、 ∫[x:α→β]f(g(x))g'(x)dx=∫[t:g(α)→g(β)]f(t)dt gの単調性は使っていませんが、積分区間が x:α→βからt:g(α)→g(β)になりました。 f(g(x))g'(x)がt=γ∈(α,β)で定義されていない場合、 必ずしも、 >∫[x:α→β]f(g(x))g'(x)dx=F(g(β))-F(g(α)) が成り立ちません。したがって、 >∫[x:α→β]f(g(x))g'(x)dx=∫[t:g(α)→g(β)]f(t)dt とはなりません。 I=∫[x:0→π]sinx dx をt=sinxで置換する場合、 f(g(x))に相当するのは、tanxですが、これは、x=π/2で定義されていません。 なので、 >∫[x:α→β]f(g(x))dx=∫[t:g(α)→g(β)]f(t)dt に相当する式が成り立たなくても、おかしくないと思います。 積分区間を分割する必要が出てくるのは、 「sinxが単調でないから」ではなく、「tanxがx=π/2で定義されていないから」だと思いますが、いかがでしょうか?

回答No.4

No.2です。 置換する場合の単調性の確保は必須だと考えます。 例えば、以下のような定積分を考えます。(これって、反例になりませんか?) I=∫[x:0→π]sinxdx これを普通に計算すると、 I=[-cosx][x:0→π] =-cosπ - (-cos0) =2 です。(sinxの1つの山とx軸とで囲まれる面積ですから、0にはならない) これを、sinx=tと置換し、単純に「x:0→πなのでt:0→0」というふうにやると、積分の始点と終点が同じですから、自動的にI=0になってしまいます。これは矛盾ですね。 もちろん、cosxdx=dt、0≦x≦π/2ではcosx≧0、π/2≦x≦πではcosx≦0であることに注意して、  dx=dt/cosx=dt/√(1-t^2) x:0→π/2つまりt:1→0  dx=dt/cosx=-dt/√(1-t^2) x:π/2→πつまりt:0→-1 などというふうにやればOKのはすですが。

goodo
質問者

お礼

springsideさま、eatern27さま、 ここで、ご一緒にお礼を述べさせていただいてよろしいでしょうか。お二人とも、度々御回答いただき、本当にありがとうございました。 eatern27さまの#1の御回答は実はすぐに読ませていただいていたのですが、それではうまくいかなかった問題があったはずだ、と反例を探すとともに、他の方の御回答がいただけるのをお待ちしていました。 そして#2の御回答を読ませていただいて、 >(x:0→πをそのまま置換してt:0→0にすると、被積分関数が何であっても積分結果は0になってしまいます) というご意見にそうこういう場合!と思っていました。 そして、#2の御回答のように分割すれば、いいのか、と納得しました。 が、#3の御回答を読んで、なるほど、どちらの方法でも、結局同じ回答になるのか、と思うと、 #4の御回答で、やっぱり違うの!? と#5の御回答は正直いまいちよくわかりません。もう一度考えてみたいと思います。もし可能であれば、#5の一番最後の問の御回答がいただけたらと思います。 みなさま、お忙しいところいつもありがとうございます。

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.3

一応、#2さんと私(#1)で違うことを書いているので、、、 被積分関数によらず、積分結果が0になること自体には、問題はありません。(むしろ、積分結果が0にならない方がおかしいと思います。) 実際、#2さんのように、 ∫[x:0→π]f(sinx)cosxdxをsinx=tで置換する時に、積分区間を > x:0→π/2 と x:π/2→0 >と分けて、 > t:0→1 と t:1→0 としても、 ∫[t:0→1]f(t)dt+∫[t:1→0]f(t)dt=0 となるので、結局、被積分関数によらず、積分結果は0になります。 なので、t=g(x)で置換する時には、 積分区間はx:α→βからt:g(α)→g(β)とする、 という解釈で問題ないと思います。 もちろん、 (置換前の)積分区間で、gの導関数が定義されていない (置換後の)積分区間で、(置換後の)被積分関数が、定義されていない などの場合には、上の解釈で支障が出てくる場合があるかもしれませんが、 そういう場合には、積分区間云々以前に、t=g(x)で置換できるのか、みたいな事になると思います。 積分区間を分割したところで、解決される問題でもないでしょう。 と言っても、証明しつつ考えた、って訳ではないので、自信なしです。なので、 >積分区間はx:α→βからt:g(α)→g(β)とする の解釈では上手く行かない例を示されると、ころっと、意見が変わるかもしれません。^^; どうでしょうか?

回答No.2

Sinx=tと置換したとき(元のxの積分範囲が0→πのとき)Cosxdx=dt このときtの積分範囲は、 0→1ですか?それとも、1→0でしょうか? これですが、置換するときは単調になるようにする必要があります。 つまり、xをtに置換するとすれば、xの変化に応じてtが単調に変化する(ずっと増加か、ずっと減少)ようにしなければならないので、この場合であれば、  x:0→π を  x:0→π/2 と x:π/2→0 に分けて、  t:0→1 と t:1→0 にします。 (x:0→πをそのまま置換してt:0→0にすると、被積分関数が何であっても積分結果は0になってしまいます)

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

置換積分を確認してください。 ∫[x:α→β]f(g(x))g'(x)dx をt=g(x)で置換すると、 ∫[t:g(α)→g(β)]f(t)dt になります。 積分区間はx:α→βからt:g(α)→g(β)になっています。 >Cosx=t(元のxの積分範囲が0→πのとき)と置換したとき、 >-sinxdx=dt >tの積分範囲は、1→―1でしょうか?それとも、-1→1でしょうか cos(0)→cos(π)、つまり、1→-1です。 >Sinx=tと置換したとき(元のxの積分範囲が0→πのとき) >Cosxdx=dt >このときtの積分範囲は、 >0→1ですか?それとも、1→0でしょうか? sin(0)→sin(π)、つまり、0→0です。 >基本的には元の範囲が0→πのとき、置換後の範囲は、 >(0に対応するt)→(πに対応するt)ということでいいのでしょうか。 その考えでよいでしょう。 そのようになる理由(証明?)については、置換積分の証明を、教科書や参考書等で確認してください。

関連するQ&A

  • 三角関数の積分

    1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx  cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。

  • マクローリン展開と置換積分(∫xcosxdx)

    現在大学2年で理工学部で物理専攻しています。 そこで、 ∫xcosxdx   -(#) についての質問なんですが、 (#)=∫x(sinx)'dx とおくと、高校数学の範囲で (#)=cosx+xsinx+C(積分定数) とわかるのですが、 (#)=∫(x^2/2)'cosxdx とすると、nの偶奇によって最終項が変わりますが、 (#)=cosx(x^2/2! - x^4/4! + x^6/6! -・・・)+sinx(x^3/3! - x^5/5! + x^7/7! - ・・・) + ∫(x^n/n!)sinxdx もしくは (#)=cosx(x^2/2! - x^4/4! + x^6/6! -・・・)+sinx(x^3/3! - x^5/5! + x^7/7! - ・・・) + ∫(x^n/n!)cosxdx となります。 マクローリン展開を使うと、 (#)= cosx + xsinx - 1 + ∫(x^n/n!)cosxdx or (#)= cosx + xsinx - 1 + ∫(x^n/n!)sinxdx になります。 これがcosx+xsinx+C(積分定数)になるには最終項の積分が定数にならなくてはおかしいと思うのですが、この最終項が定数に収束することって証明できるのでしょうか? または、この考察はどこか間違いがあるのでしょうか? よろしくお願いします。

  • 自分の置換積分の間違いを教えて下さい

    置換積分で遊んでいる内に、置換積分で積分した時と通常の方法で積分した時に答えが異なるケースがありました。 こんな事はありえないと思うので、自分の考えが間違っていると思うのですが、どこが間違っているのか分かりません。 済みませんが、皆さんのお知恵をお貸しください。 問題のケースはx^4です(置換積分する必要性は全くありませんが、思考実験として)。 ・通常の積分 ∫(x^4)dx=(1/5)*(x^5)+C ・置換積分の場合 t=x^2とする。 dt/dx=2x dx=(1/2x)dt ∫(x^4)dx =∫t^2*(1/2x)dt =(1/3)t^3*(1/2x)+C =(x^2)^3/6x+C =(1/6)*x^5+C 係数が、通常の積分の場合は1/5に、置換積分の場合は1/6になってしまいました。 どこが間違っているのでしょうか?

  • 定積分

    ∫[1→2](sinπx)^2dx この問題なんですが、置換積分を用いて t=πxとおいて dx=dt/π tの範囲は[π→2π] ∴∫[π→2π](1/π)(sint)^2dt =(1/π)∫[π→2π](sint)^2dt =(1/π)[(1/3cost)(sint)^3][π→2π] =0 ってなったんですが答えは1/2でした。 どうすればいいでしょうか?

  • 積分の問題です。先ほども質問させてもらいましたが、

    積分の問題です。先ほども質問させてもらいましたが、 自分なりに解いた答えと、皆さんの答えが違っていました。 どこが違うのか、考え方が違うのか教えてください。 ※パソコンでの書き方が慣れていないため、かっこの付け方や  途中式で見ずらいものがあると思います。お許しください。 次の定積分を求めよ。  (1)∫(0~π/2)sin^2xcos^3xdx    =∫(0~π/2)sin^2(1-sin^2)cosxdx    =∫(0~π/2)(sin^2-sin^4)cosxdx    =∫(0~π/2)sin^2(cosx)-sin^4(cosx)dx    =[(1/3)sin^3x-(1/5)sin^5x](0~π/2)    =(1/3-1/5)-0    =2/15  (2)∫(0~1)xtan^-1xdx    t=tan^-1xとおくとx:0→1のときt:0→π/4     x=tant dx=1/(cos^2t)dt     ∫(0~1)xtan^-1xdx     =∫(0~π/4)tant/cos^2tdt     =∫(0~π/4)(sint/cost)(1/cos^2t)dt     =∫(0~π/4)sint/cos^3tdt     =∫(0~π/4)(cos^-3t)(sint)dt     =[(1/2)cos^-2(t)](0~π/4)     =(1/2)(1/(1/√2)^2)-(1/2)(1/(1^2)     =1-(1/2)=1/2 と解きました。長くなりましたが、よろしくお願いします。

  • 積分 証明 問題

    積分 証明 問題 ∫[0~π](x・sinx)dxを求めよ。 I=∫[0~π](x・sinx)dxとおく。 x=π-tとおくと、dx/dt=-1、積分範囲はπ~0 I=∫[π~0](π-t)・sin(π-t)(-dt) =∫[0~π](π-t)・sin(π-t)dt =∫[0~π](π-t)・(sint)dt 2I=∫[0~π](x・sinx)dx+∫[0~π](π-x)・(sinx)dt  =∫[0~π]πsinxdx  =2π I=π 一点分からない点があります。 ∫[0~π](π-t)・(sint)dt=∫[0~π](π-x)・(sinx)dt について。単純にtをxに置き換えただけだと思いますが、 x=π-tと置換しているのに、t=xと同じ変数を使って再度 置換して良いのでしょうか? 以上、ご回答よろしくお願い致します。

  • 置換積分法について

    今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。

  • 定積分の積分範囲

    F(x)=∫[1→x]|t-x|dt のグラフを書けと言う問題で 解答を見ると場合分けで答えているのですが、 x<=1のとき積分範囲x<=t<=1 ∫[1→x](t-x)dt= -((1-x)^2)/2 x>=1のとき積分範囲1<=t<=x  ∫[1→x](x-t)dt= ((1-x)^2)/2 計算自体は問題ないのですが x<=1のときに[1→x]への積分範囲とはどんな意味なのですか? 参考書には定積分の上限と下限の大小は積分公式には関係無いと 書いてあるのですがちょっと分かりません

  • 積分区間

    積分区間(0→π)sinx/(2-(cosx^2))を積分する問題です。よろしくお願いいたします。 解答はこれをcosx=tと置換しているのですが、私は、解答を見る前は自分では、sinx=tと置換しました。が、置換するときに置換範囲で困ってしまいました。というのもxが(0→π)のとき、tの積分範囲は0→0になってしまったからです。でも、この場合xが(0→π)のときsinxは0≦sinx≦1と動くので、積分範囲は置換後0→1となるのでしょうか?でもなんだかおかしいような気がします。でもなにがおかしいのかわかりません。 そもそもsinx=tと置換すること自体が間違いなのでしょうか?それとも、sinx=tと置換するのも間違いではないが、その場合は、・・・その場合は範囲はどうなりますか? よろしくお願いいたします。

  • 2重積分の「置換積分」?

     I = ∬exp(x+y)dxdy ; 積分領域{(x,y)|0≦x≦1,0≦y≦1} という2重積分を、  t(x,y) = x+y と置き替え  ∂t/∂y = 1  0≦y≦1 ⇒ x≦t≦x+1 と思い  J(x) = ∫exp(t)dt ; 積分区間{t|x≦t≦x+1}  = {exp(1)-1}exp(x)  I = ∫J(x)dx ; 積分区間{x|0≦x≦1}  = {exp(1)-1}^2 のように定積分の置換積分の手法を用いて解いたら一応答えと合っていました。しかし、私としては、  ∂t/∂y = 1 ⇒ dt = dy のように考えている辺りがなんとなく間違っているような気がするのです。この問題だから偶然に答えが合っていたのでしょうか?もしくは、流れは正しくても、断りをもっと立てないといけないのでしょうか? パソコンでの数式の書き方に慣れていませんので、どうも見えにくくて申し訳ありませんが、ご教授のほどよろしくお願いしますm(_ _)m