• 締切済み
  • すぐに回答を!

微分積分に関する問題なのですが、分かる方教えて下さい><!

微分積分に関する問題なのですが、分かる方教えて下さい><! 曲線Cが極方程式 r=f(θ) (α≦θ≦β) で表わされる場合の曲線の長さLを与える公式を 「x=f(t)、y=g(t) (a≦t≦b)の長さLは、L=∫b/a√[(dx/dt)~2+(dy/dt)~2]dt=∫b/a√[{f´(t)}~2+{g´(t)}~2]dt」 という曲線の長さの公式を用いて導け。 ちなみに、 ∫b/a → ∫のbからaまでの範囲 (dx/dt)~2 → (dx/dt)の2乗 √の中身は、[ ]で囲んだところまでです。 見にくくて申し訳ないのですが、よろしくおねがいします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

r = f(θ) ってことは、 x = f(θ)・cosθ, y = f(θ)・sinθ ってことでしょ。 それを、 x = F(θ), y = G(θ), (a ≦ θ ≦ b) の長さ L は、 L = ∫[θ=a…b] √{ (F´(θ))^2 + (G´(θ))^2 } dθ という曲線の長さの公式に 代入して整理することは、できますか?

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「曲線の長さの公式」にあてはめるにはどうすればよいかを考えればいいんじゃないの?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分 積分 問題

    微分 積分 問題 F(x)=∫[a~x]((x-t)^2)f(t)dtのときdF/dxを求めよ。 という問題なのですが、原始関数F(x)を求めて、微分すればよいのですが F(x)=∫[a~x]((x-t)^2)f(t)dtの積分がわかりません・・・ どのようにすれば良いのでしょうか? ご回答よろしくお願い致します。

  • 微分・積分 問題

    微分・積分 問題 d^2/dx^2(∫[0→x](x-t)f(t)dt)=f(x)を証明せよ。 x・∫[0→x]f(t)dt-∫[0→x]t・f(t)dtとしました。 上の式を積分して、2回微分しようと考えているのですが、 ∫[0→x]t・f(t)dtが分かりません。 d/dx(x・∫[0→x]f(t)dt)-d/dx(∫[0→x]t・f(t)dt)と1回微分して、さらにもう一度微分を行うと、d/dx(∫[0→x]f(t)dt+xf(x)-xf(x)) よって、d/dx(∫[0→x]f(t)dt=f(x) 解き方は合っているでしょうか? ご回答よろしくお願い致します。

  • 微分・積分

    仮にA=-Δy/Δxという公式があったとします。これはyの式をxで微分して-1を全体にかけろって考えかたでよろしいのでしょうか?仮に、xとyのパラメータを集めてそれをグラフ化し、エクセルで曲線のグラフを作ります。その曲線に近似曲線を当てはめて公式を作ったとします。この近似曲線の公式をyと見立ててxで微分して近似曲線の微分公式を作成して,個々それぞれのx値を代入していく方法で部分的なAという値は求まるのでしょうか?また近似曲線のR^2値は1に近ければ近いほど近似されていると考えてよろしいのでしょうか?近似曲線の次数を上げればあげるほどR^2値が1に近づく場合はやはり1番高い次数の公式を使用したほうがよいのでしょうか?微分積分と聞くとなぜか接線とか加速度・速度・距離の微分積分の関係をイメージしてうんですがいまいちよく理解できていない点が多すぎて困ってます。物理では昔、微分やら積分などを使っていた記憶があるのですが、そのとき微分・積分の式(Δy/Δxや∫f(x)dx)を色々とこねくり回して式を変形させていた記憶があります。この辺がいまいち思い出せなくて困っています。また、F=maをa=F/mとして時間tで積分していくとvという速度の公式になり、それまたvの公式を積分するとxという距離の公式になると思っているのですが、それぞれが不定積分なのでCなどというようなものがついてきます。それが初速度だったり、初期位置だったりというあいまいな記憶があるのですが間違っているのでしょうか?

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

  • 「高校数学」置換積分法の公式について

    x=g(t)のときの置換積分法の公式∫f(x)dx=∫f(g(t))g'(t)dt についてなんですが、 dx/dt=g'(t)だから dx=g'(t)dtよりこれを左辺のdxに代入して 機械的に右辺の式になると考えるのは間違いでしょうか? 教科書では y=(左辺)として dy/dt=(dy/dx)(dx/dt)=f(g(t))g'(t)だから両辺tで積分して 右辺を作ってましたが・・・

  • 平面スカラー場の線積分について

     x-y 平面上の領域 D で関数 f(x,y) が定義され、D 内にある平面曲線 C を   x = x(t), y = y(t) (a ≦ t ≦ b) ・・・・・・・ (#0) で表わすとき、この「曲線 C に沿った線積分」を線素   ds = √(dx^2 + dy^2) = √( (dx/dt)^2 + (dy/dt)^2 ) dt を使って   ∫_C f(x,y) ds   = ∫[a,b] f( x(t),y(t) ) √( (dx/dt)^2 + (dy/dt)^2 ) dt ・・・・・・・ (#1) と定義する。  (#1)が「曲線 C に沿ってできる」x-y 平面に垂直なカーテン状の曲面の面積を表すことはわかりやすいのですが、ちょっとわかりにくいのが「曲線 C に沿ってできる x に関する」線積分   ∫_C f(x,y) dx = ∫[a,b] f( x(t),y(t) ) dx/dt dt ・・・・・・・ (#2) の定義です。もし、(#0) の曲線 C の y と x が一対一に対応していたら、(#2) の線積分は (#1) の曲面を x-z 平面に投影した図形の面積を表すと解釈してよいのでしょうか。  ベクトル解析の参考書を2冊持っているのですが、そんな説明はどちらの参考書にもないので心配なのです(笑)。

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • この微分方程式

    この微分方程式の解き方が分かりません dy(t)/dt=ay^2+b と dy(t)/dt=ay^(1/2)+b たいてい公式を使って解けるはずなんですが、その公式が分からなくて解けません。 知っている人がいたら教えてください。

  • 微分積分 速度の問題について

    以下の問題の解説が理解できません。どなたか教えてください。 ・高さ4mの岸から、ロープを船につなぐ。船から毎秒1mだけロープをたぐる。ロープの長さが残り20mになった時、船の速さを求めよ 解説 ロープの残りの長さをy m、岸までの距離をx mとすると、三平方の定理より、 x^2+16=y^2。 x,yは時刻tの関数だから 2x dx/dt = 2y dy/dt よって、 dx/dt = y/x ・ dy/dt 設問より、dy / dt = -1より、 dx / dt = -x /-y y= 20の時、x=8√6より、 速さは(岸壁に向かって)5√6/12 ----------------------------- この解説の、 x,yは時刻tの関数だから 2x dx/dt = 2y dy/dt の部分が理解できません。 x^2+16=y^2の両辺をtで微分したなら、 2x = 2y になるのではないでしょうか? (合成微分より。仮に、x,yでなくf(t)、g(t)と置き換えてみると、そのように思われます。f(h(t))、g(h(t))のような関数をtで微分したなら話は変わってきますが…) 推奨回答時間5分の問題に、また4時間ほどかけて悩んでおり、頭を抱えています。 どなたか、ご教授願います。

  • 微分方程式と積分

    1.次の微分方程式を解け。 (1)y''+2y'+y=3sin2x 同次微分方程式の一般解はu(x)=(C₁+C₂x)exp(-x) と求められるのですが、非同次微分方程式の特殊解u₀(x)が求められません。 どうやって求めればいいのでしょうか。 (2)y''-5y'+6y=x(exp(x)) 非同次微分方程式の特殊解u₀(x)はどうやって求めたらいいのでしょうか。 2.置換積分によって、次の定積分を求めよ。 1.∫[0→π/2] 1/(1+cosx)dx tanx/2=tと置いた後、どうすればいいのでしょうか。 2.∫[0→a] x^2(√a^2-x^2)dx(a>0) x=asintとおくと、dx=acost dt .∫[0→a] x^2(√a^2-x^2)dx=∫[0→π/2] a^2sin^2t*acos^2t dt このあとどうすればいいのでしょうか。 お願いします。