• 締切済み
  • すぐに回答を!

微分積分に関する問題なのですが、分かる方教えて下さい><!

微分積分に関する問題なのですが、分かる方教えて下さい><! 曲線Cが極方程式 r=f(θ) (α≦θ≦β) で表わされる場合の曲線の長さLを与える公式を 「x=f(t)、y=g(t) (a≦t≦b)の長さLは、L=∫b/a√[(dx/dt)~2+(dy/dt)~2]dt=∫b/a√[{f´(t)}~2+{g´(t)}~2]dt」 という曲線の長さの公式を用いて導け。 ちなみに、 ∫b/a → ∫のbからaまでの範囲 (dx/dt)~2 → (dx/dt)の2乗 √の中身は、[ ]で囲んだところまでです。 見にくくて申し訳ないのですが、よろしくおねがいします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数27
  • ありがとう数2

みんなの回答

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

r = f(θ) ってことは、 x = f(θ)・cosθ, y = f(θ)・sinθ ってことでしょ。 それを、 x = F(θ), y = G(θ), (a ≦ θ ≦ b) の長さ L は、 L = ∫[θ=a…b] √{ (F´(θ))^2 + (G´(θ))^2 } dθ という曲線の長さの公式に 代入して整理することは、できますか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

  • 微分積分

    微分積分のやり方がイマイチ分かりません。 (1)∫2xdx=x^2+C を積分した時に、なぜx^2+Cになるのですか。細かく途中式を書いて下さい。 (2)∫4x^3log x dx の式で微分すると簡単になる方をfすると、あるのですが、どう調べるのですか。そして =∫logx・(x^4)'dx で、なぜ4x^3がx^4になったのか詳しく教えて下さい。

  • 数値のみ微分積分

    いまいち微分積分が曖昧です。 数字のみ(3や0.5など)の微分積分はどうなるんですか? 2d/dt,0.5d/dtや∫3dt,∫0.5dt お願いします。

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「曲線の長さの公式」にあてはめるにはどうすればよいかを考えればいいんじゃないの?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学の微分積分の問題がわかりません。

    数学の微分積分の問題がわかりません。 次の等式を満たす整数f(x)を求めよ。 f(x)=x^3-x•∫[0→1]f(t)dt+5•∫[1→x]f'(t)dt わかりません。。 おねがいします!

  • 微分積分について(一階線形微分方程式)

    この問題の解き方について教えて下さい。 問、曲線y = f(x)上の任意の点P(x , y)における    接線の傾きがPのx座標とy座標の和に等しい。    このような曲線のうち原点を通るものの方程式を答えよ。   Ans. y=e^x - x -1 (自分の解いたやりかた(答えがどうしても一致しないので間違っているところを教えて下さい。)) dy / dx = x + y・・・(1) (dy / dx) - y = x 斉次微分方程式(dy / dx) - y = 0を解く y' = y 変数分離で解くと y = C e^x (Cは積分定数) Cをxの関数uと置き換えて y = u e^x y' = u' e^x + u e^x これを(1)へ代入 u' e^x = x u' = x e^(-x) ∫du = ∫e^(-x) dx これを解くと u= -x e^(-x) + e^(-x) - C y=ue^x=-x + 1 - Ce^x 条件より C=1 ∴y= 1 - e^x + 1

  • 数学の微分積分の問題がわかりません。

    数学の微分積分の問題がわかりません。 aを実数とする。このとき、曲線y=e^xとy=(x-a)^2の両方に接する直線が存在するようなaの値の範囲を求めよ。 わかりません。 お願いします!!

  • 微分積分の使い方

    数学のセンスがなくって申し訳ありません。 微分積分の使い方がよくわかりません。 工学を専攻し、材料力学や流体力学、音の解析とかにも微分積分を使います。 しかし、なんでそこで微分積分が使えるのかがよくわかりません。それでとりあえず解が得られるのは、わかりますが、文章の状態で問題が出された場合 「ああ、この問題あれを積分すれば解けるじゃん。」みたいな感じになりません。 ニュートンが訂した微分積分の成り立ちとか把握の仕方は、知っていますが速度、加速度、距離以外での微分積分の利用がよくわかりません。 微分積分を解くことは、練習問題、演習などでなんとなく機械的に解くことができます。しかし、高校で勉強した物理の方程式を微分積分を利用して解を得るというその考え方を作る方法がわかりません。 この質問を見た方の中で微分積分の利用方法がわかった瞬間や使い方がわかるような本を知っているようでしたら教えていただけますでしょうか。 宜しくお願い致します。

  • 微分積分 速度の問題について

    以下の問題の解説が理解できません。どなたか教えてください。 ・高さ4mの岸から、ロープを船につなぐ。船から毎秒1mだけロープをたぐる。ロープの長さが残り20mになった時、船の速さを求めよ 解説 ロープの残りの長さをy m、岸までの距離をx mとすると、三平方の定理より、 x^2+16=y^2。 x,yは時刻tの関数だから 2x dx/dt = 2y dy/dt よって、 dx/dt = y/x ・ dy/dt 設問より、dy / dt = -1より、 dx / dt = -x /-y y= 20の時、x=8√6より、 速さは(岸壁に向かって)5√6/12 ----------------------------- この解説の、 x,yは時刻tの関数だから 2x dx/dt = 2y dy/dt の部分が理解できません。 x^2+16=y^2の両辺をtで微分したなら、 2x = 2y になるのではないでしょうか? (合成微分より。仮に、x,yでなくf(t)、g(t)と置き換えてみると、そのように思われます。f(h(t))、g(h(t))のような関数をtで微分したなら話は変わってきますが…) 推奨回答時間5分の問題に、また4時間ほどかけて悩んでおり、頭を抱えています。 どなたか、ご教授願います。

  • 微分積分

    現在、高校1年なのですが微分積分に興味があり本を探しています。 微分積分の基本的なことから学校で習わないようなことまで書かれているもので興味がそそられるものがいいです。 本質がしっかりと理解できるようになりたいです。 あまり問題ばかりというのは興味がそそられません。 回答宜しくお願いします。 ちなみに微分積分の知識はありません。

  • 微分積分などの独学について

    数IIで習う微分積分の独学はきついでしょうか?前に「微分積分は計算はできても、独学では理解できるようにならない。」と聞いたことがあります。 実際どうなのでしょうか?もし独学できついなら塾に行きますが、数学があまり得意でない(進研で60ぐらい)の僕にはやはり無理でしょうか。 このごろ、数学はかなり勉強しているので、微分積分を学習するころ(3,4ヶ月先)にはもっと偏差値が上がっているとは思いまが・・・ 独学が可能と思われるか、ちょっと難しいと思われるか、教えてください。また、一般的に(独学では理解しづらいような)難しいといわれている数IIB,数IIICの範囲を教えてください。

  • 微分積分がなかったら・・・

    もしものことを考えたのですが、ニュートンやライプニッツが微分積分を発明したらしいのですがもし微分積分が発明されなかったら現代の科学や経済はどうなっていたのでしょうか?もっと大きくすると数学が発展しなかったら僕たちはこんなパソコンを使ったり携帯を使ったりという便利な生活は出来なかったのでしょうか?わかりにくい質問ですが何か教えてください

  • 微分積分の使い道について

    微分積分の使い道について 昔から数学が得意でなくて、微分積分もなんとなくでここまでやってきました。しかし、一応は出来るものの、未だにその存在意義がよくわかりません。一体どういう場面、どういった目的、どういった用途で微分積分は用いられ、役に立っているのでしょうか?

  • 微分積分について

    微分積分の簡単な解き方があれば教えてください