• ベストアンサー
  • すぐに回答を!

ばね振り子の問題で、

物理でははじめてです。 単振動が苦手で、しかも答えがわからなくて、自分の考えが不安です。なので確認・質問もさせてください。 問題 「ばね定数kで重さを無視できるつる巻きばねの上端Aを固定し、下端Bに質量mのおもりをつけて鉛直につるし、おもりを静止させた。」 このときばねの伸びは(1)である。 この状態で、おもりに大きさvの鉛直下向きの速度を与えたところ、おもりは振幅が(2)で、周期が(3)の単振動をした。 この運動でv=(4)とすると、おもりが最高点に達したときにばねはちょうど自然の長さにもどる。 この(1)~(4)を埋める問題なのですが、 私の回答では (1)は、ばねの上向きの力F=kxと、重力mgがつりあっているので、 kx=mg x=mg/k---------(1) (2)では、公式v=Aωより A=v/ω ω=√k/mだから、 A=v√m/k----------(2) (3)は、T=2π/ω より、 T=2π√m/k-------------(3) と考えました。ここまでは公式をいれて考えたのですが、あっていますでしょうか。 そして一番の疑問は(4)なのですが、文章の意味がわかるようで、解けません...最高点ということは、振動の中心から、上へv√m/k行ったところとはわかるのですが、この場合自然の長さが出ていないので、0。 v√m/k=0、v=0 と考えていいのでしょうか・・・(ダメですよね; そもそも、速さのMaxはv=Aωで求めますが、それは振動の中心で速さが最大ということでしょうか?となると、やはり最高点では速さは0....ですが速さを0にしたところで自然の長さにならないと思うのですが・・・ 内容理解が薄くて申し訳ございませんが、ご回答、よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • sanori
  • ベストアンサー率48% (5664/11798)

(1)、(2)、(3)3つとも合ってます。 そして、(4)ですが、 >>> 速さのMaxはv=Aωで求めますが、それは振動の中心で速さが最大ということでしょうか? その通りです。 >>> となると、やはり最高点では速さは0....ですが速さを0にしたところで自然の長さにならないと思うのですが・・・ これも、その通り。鋭いですね。 静かに吊るした状態では、ばねは自然長からxメートルだけ伸びています。 ですから、振動中心から見て上にxだけ行ったところが自然長です。 一方、 振動中心から振幅Aで振動していますから、振動中心から上にAだけ上ったところが自然長です。 つまり、 x = A あとは自力で何とかなりますよね?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 自然長からの伸びxと振幅Aがイコールになればよいのですね! わかりやすいご説明ありがとうございました。

その他の回答 (1)

  • 回答No.2
noname#40706
noname#40706

1~3 OKだと思います。 4:おもりが最高点に達したとは 速さが0 あるいは振動の上のはしっこです。したがって、 A=x となります。 A=v√m/k、x=mg/k でしたね。 これからv=g√(m/k)だと思います。 はじめおもりをつけないときの位置が自然の長さ おもりをつけてゆっくり下ろして静止した位置(これが伸びxでしたね) ここが「つりあいの位置」そしてこの点が単振動の中心です。vの速さで下に向かって発射?してAだけ下に行ったのですから、逆に上向きにもAだけいくはずです。単振動の上半分の振幅がx、下半分の振幅がAということです。 <ですが速さを0にしたところで自然の長さにならないと思うのですが・> 自然の長さのところで速さが0になるようにするのです。そうなるような速さvを求めなさいというのが問い4の趣旨ではないのでしょうか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 なるほど 自然の長さのところで速さが0になるようにするのですね、不安が解けました。 丁寧なご説明ありがとうございました。

関連するQ&A

  • ばねの問題

    ばねにぶらさげたおもりの上下振動を考える。ばねの一端を天井の点Aに固定し、他の端におもりを結びつけるものとする。 おもりが受ける力は、重力と、バネの通じて天井がおもりを引く力である。おもりは質点とみなせるものとする。 (a)点Aを原点として鉛直下向きにx軸をとり、おもりの運動方程式をたてよ。なお、おもりの質量をmとし、バネの自然長をL、バネ定数をkとする。他にも必要な記号があれば設定すること (b)運動方程式にあらわれる定数(kやmなど)の値は既知であるものとして、おもりのつりあいの位置を求めよ。つりあいの位置をx=x0とする。 (c)おもりの運動方程式を解き、位置xの時間変化を図示せよ。 振動の周期がどこからどこまでなのかよく分かるような図にすること 考えたことは (a) 重力加速度gとして m*d2m/dt2=mg-k(x-L) となる (b)つりあいより kx=mg から x0=mg/k (c)は解き方などがわからないです これらの問題がいまいち分からないので教えてください。違う点などの 指摘をお願いいたします

  • ばねの問いについて

    ばねの問題で質問です。ばねを天井につるし(ばね乗数k)として、ばねに質量mの物体をつるして つりあわせます。いま物体が静止している状態、つまりばねの伸びは、mg/kですよね。 この状態からdだけ伸ばして、単振動をさせるとします。いま力は鉛直上向きを正とすると ばねの伸びをxとして ma = mg -kx ⇔a = -(k/m){x - mg/k }より、ω=√k/mで振動の中心がmg/kなのも わかります。 ここで質問なのですが、中心の座標はmg/kなのですが、原点はばねが自然長の位置という 理解でいいのですか? 振動の中心は、mg/kで、座標の原点は自然長の位置でいいのですか?

  • ばね振り子の力学的エネルギーの証明

    ばね振り子の振動中の任意の一点と自然長でのばね振り子の力学的エネルギーが等しいことを証明しようと思うのですが、うまくいきません。 外力が働かないため、力学的エネルギー保存則が成り立っているといえばそれまでなのですが、そうではなく、実際に計算によって確かめたいのです。 ばね定数kのばねに重さmの重りをぶら下げた時の釣り合いの位置をd(つまり、mg=kd)とする。 自然長(×つり合いの位置)Oでの速さをv0、任意の点Yでの速さをv、長さをyとすると、力学的エネルギー=運動エネルギー+重力の位置エネルギー+弾性エネルギーより、 E(Y)=mv^2/2+mg(y-d)+k(y-d)^2/2 E(O)=mv0^2/2+0+0 よって、 E(O)-E(Y)=m(v0^2-v^2)-(mg(y-d)+k(y-d)^2/2) =…… などと計算を続けたのですが、自分ではうまく0にできません。 どなたか模範回答をご教示ください。どうかよろしくお願いします。

  • バネによる位置エネルギーと重力による位置エネルギーについて

    この二つは同時に考える必要がありますか? 問 角度θでの斜面において、最下部を点Pとしてそこにストッパーをつけます。このストッパーからバネ定数がkであるバネ(自然長l)を斜面に沿って上向きに付けて、ストッパーとは固定します。次にバネのもう片方に質量mの重りを固定させます。 ここで重りに斜面に沿って下向きにvの初速度を与えて単振動(振幅A、)させた時のエネルギーの保存式はどうなりますか? 自分で考えた答え (1) (kA^2)/2 = (kx'^2)/2 + (mv^2)/2 ただし x' = (mg*sinθ)/k (2)重りには重力による位置エネルギーがあるため(1)の式の両辺にそのときの位置エネルギーを加えなくてはならない (1)と(2)どちらが正しいのでしょうか?それともどちらとも違いますか? よろしくお願いします

  • 鉛直ばね振り子の減衰振動の運動方程式について

    摩擦のある水平面でばね振り子減衰振動の運動方程式は m(d^2x/dt^2)=-kx-α(dx/dt) kはばね定数 で与えられると思いますが、鉛直ばね振り子の場合、重力のmgは運動方程式に加えなくてもよいのでしょうか? それとも 高校のころ、単振動の問題を解くとき、鉛直ばね振り子の場合はx=lを釣り合い位置としてkl=mg k=mg/l がこの場合のkであって、ばね定数とは違う値だ、というようなことを習った記憶があるのですが、この場合のkもそれでしょうか?

  • 鉛直方向のばね振り子

    ばね定数kの軽いばねを天井からつるし、他端に質量mの小球Aを取り付け、ばねが自然長になるようにAを手の上にのせて支えた。このときのAの位置を原点Oとし、鉛直下向きを正の向きとしてx軸をとる。また、重力加速度の大きさをgとする。 (a)Aを手の上にのせたまま、O(x=0)からゆっくりと鉛直に下降させたところ、やがてAは手から離れて静止した。Aが手から離れた時のAの位置をPとし、Pの位置座標をx=x0とする。 (1)Aが座標x(0<x<x0)にあるとき、手がAに加えている力を求めよ。ただし、鉛直下向きを正とする。 という問題で、自分は小球Aにはmgとばねの弾性力kxが働いているから、それでしかも鉛直下向きを正と書いてあるから、 弾性力は伸びた位置から上向きに行こうとするからーkxとして、重力は正の向きに働いているからmgで運動方程式F=mgーkxと式を立てたのですが、解答ではF=kxーmgとなっていたのですがなぜなのでしょうか?

  • 高校物理のばねの問題です。

    あるばね定数 k のばねの一端が天井に固定されていて、他端に質量mのおもりが付けられている。ばねが自然長になるようにおもりを手で支え、(1)急に手を離すと、おもりは振動を始めた、(2)手でおもりを支えながらゆっくり手を下ろしていくと、ばねは伸びて、ある高さでおもりは静止した。 (1)(1)と(2)でなぜこのような違いが生じるのか、仕事とエネルギーの考え方から説明してください。 (2)(1)の振動の最下点でのばねの伸びは、(2)でのばねの伸びの何倍でしょう。 できるだけ早く回答をお願いします。

  • 円錐ばね振り子

    高校物理円錐ばね振り子の問題です。  バネと視点の高さ h のなす角をθ、バネの伸びを x、垂直抗力を N としたとき   r = (L+x)sinθ   h = (L+x)cosθ  水平方向の運動方程式は   mrω^2 = kxsinθ なので   m(L+x)sinθω^2 = kxsinθ   m(L+x)ω^2 = kx   ω^2 = kx/m(L+x)  鉛直方向の運動方程式は   mg-N = kxcosθ   N = kxcosθ + mg    = kx・h/(L+x) ここで行き詰まってしまいました。

  • おもりをつけたばねを回転させる問題

    質量mのおもりをつけたばね定数kのばね(自然長はL)を水平面上に置き、他端を固定します。 角速度ωで回転させて、ばねの伸びをxとして、 つり合いの式を立てると、 kx=m(x+L)ω^2 となります。これをxについて解くと、 x=(mLω^2) / (k-mω^2) しかしω^2=k/mとなる角速度にすると、xが無限大となり ばねは無限に伸びてしまいます。 実際問題、このようにばねの伸びが無限になる角速度にすると、 ばねは壊れてしまうということでよろしいでしょうか? また、壊れてしまうということは、実際にはこの角速度を超える速さで 回転させることはできないということでしょうか? その角速度の値より大きくしていくと、xは負の値になるので、ここも納得が いきません。ある一定の角速度を超えると、ばねは自然長より縮むことに なってしまいますけど。 よろしくお願いいたします。

  • ばねの運動方程式

    フックの法則に従う、質量の無視できるバネ(バネ定数:k)の先端に質量mのおもりを付け自然長よりx0伸びて静止した状態からさらに、aだけ引き伸ばして手を離す場合、運動方程式は下向きを正ととると、 -kx+mg=mx'' で正しいでしょうか。 ご教授お願いいたします。