• ベストアンサー
  • 困ってます

鉛直ばね振り子の減衰振動の運動方程式について

摩擦のある水平面でばね振り子減衰振動の運動方程式は m(d^2x/dt^2)=-kx-α(dx/dt) kはばね定数 で与えられると思いますが、鉛直ばね振り子の場合、重力のmgは運動方程式に加えなくてもよいのでしょうか? それとも 高校のころ、単振動の問題を解くとき、鉛直ばね振り子の場合はx=lを釣り合い位置としてkl=mg k=mg/l がこの場合のkであって、ばね定数とは違う値だ、というようなことを習った記憶があるのですが、この場合のkもそれでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数3208
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

実際mgを加えてみてください。ただし,mg=kl として X=x-l と 座標をずらせば,目的の運動方程式を得ます。 運動方程式でこれができるので以下はあたりまえですが,エネルギーに ついても同様のあつかい(つりあい位置からの変位に書き換えると 重力による位置エネルギーがキャンセルできる)が可能です。

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.2

ただし,減衰項が動摩擦力のように定数であったりすると 事情が異なってきますね。微分によって変位のずれ l は消えると いうことが重要です。ちなみに一定の動摩擦力がある場合は, これを重力と同じようにしてつりあい位置をずらしてキャンセル できます。ただし,すべり方向が逆になるとつりあい位置のずれも 逆になりますが。この手の問題もたまに見かけます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 運動方程式が立てられない(ばねの単振動)

    添付した問図の問題で、運動方程式が立てられなくて困ってます! 問題⇒自然長l1、ばね定数k1のばねと自然長l2、バネ定数k2のばねの間に質量mのおもりをつけてなめらかな面に置き、両方のばねの他端を自然等の位置で固定した。運動方程式を求めよ。 ちなみに教科書の答えは、 m[xの二回微分] = -k1(x-l1) + k2(l1+l2-x-l2) が正しい答えのようです。すみませんが[]の中は微分演算子d/dxを使って読みかえてください。 特に第二項がわけわからんです。なぜこういう式になるのか、教えていただきたいです!ちなみにフックの法則の式、微分を用いた運動方程式の基本は知っているつもりです。 よろしくお願いしますm(__)m

  • 減衰振動

    xは時間tの関数:x(t)であるとする。初期条件をx(0)=10、dx/dt(0)=0とするとき、次の微分方程式の一般解を求めよ。どれが減衰振動で、どれが臨界減衰の解に対応するか。 1、d^2x/dt^2+2dx/dt+4x=0 2、d^2x/dt^2+5dx/dt+4x=0 3、d^2x/dt^2+4dx/dt+4x=0 解き方が分かりません。 教えてください。

  • 【急募】運動方程式の力の符号について

    【急募】運動方程式の力の符号について 力学の衝突の問題です。 同じ質量mをもつ二つの物体A,Bがばね定数kのばねでつながれて水平面に置かれている。この水平面をX軸とする。それぞれの座標をXa,Xbとする。常にXa<Xbである。床との摩擦は無視できるとする。 この二つの物体に、X軸の負側から質量mの物体Cがぶつかった。このとき、物体A,Bが従う静止した座標から見た運動方程式を求めよという問題です。 私の答えは d^2Xa/dt^2 = (k/m)Xa d^2Xb/dt^2 = -(k/m)Xb 違いはXaの符号が+になっているということです。よろしくお願いします

  • 2本ばねをつなげた振動の周期

    大学物理の問題です。 質量mの物体と、自然長l,ばね定数kの2本のばねを図のように連結する。 物体をつり合いの位置からxずらし、手を離した。 この時の運動方程式と、振動の周期を求めよ。 壁|―www―●―www―|壁 という問題なのですが、運動方程式がm・(d^^2)x/dt^^2=-2kx になると思うのですが、周期Tをどう算出すれば良いのかで詰まっています。 特性方程式を解く必要があるのでしょうか? よろしくお願いします。

  • 減衰振動のグラフが書けない…

    微分方程式の基礎問題で、    10(dx^2/dt^2)+10(dx/dt)+10x=0 をx(t)について解き、グラフに示せという問題で足が止まりました。  この解は   x(t)= e^(-0.5)*(3cos3.12t+0.48sin3.12t)   (特性方程式 D < 0 で減衰振動)  となり、ここまでは解くできましたが、これについて関数電卓で具体的な値を求めると x(0)= 3 x(1)= 1.83 x(2)= 1.12 x(3)= 0.68 x(4)= 0.41 x(5)= 0.25 … というようになり、負の値が出ず減衰振動のグラフが書けません。  ちなみに回答例のグラフでは     t=0,2,4,… で極大に   t=1,3,5,… で極小になっています。    それぞれの値の絶対値を取ると、上記のxの値となるのですが… どこがどう違うのさっぱり分かりません… お分かりの方がいらっしゃったらどうか教えてください。

  • 摩擦力の加わる運動方程式について

    ばね定数k(N/m)のばね、減衰係数c(Ns/m)のダンパーが質量m(kg)に接続されている一質点系に外乱(m/s^2)が加わる場合の運動方程式でシミュレーション解析を行いたい この運動方程式を立てるとしたら mx''+cx'+kx=F になりますが これに動摩擦力fd(N)が加わる場合を考えると mx''+cx'+kx+sign(x')*fd=F (ただしsignは正負に応じた符号で返す) となると思うのですが、いかがでしょうか? あと、この質量mが摩擦力によって停止する条件式も入れなくてはいけないはずですが、 どのような条件を加えればいいのでしょうか? 自分が考えるには fd>|F-mx''-cx'-kx| のときに、 x''=F x'=0 x=x x'=0 のときに限りfdの値を静摩擦係数にすることが必要だと思います。 この運動方程式と条件でルンゲクッタ法による解析を行ったのですが、 どうにも解析結果が芳しくありません。 この運動方程式に間違いや、追加した方が良い条件が御座いましたら教えていただけないでしょうか?よろしくお願いします。

  • 円錐ばね振り子

    高校物理円錐ばね振り子の問題です。  バネと視点の高さ h のなす角をθ、バネの伸びを x、垂直抗力を N としたとき   r = (L+x)sinθ   h = (L+x)cosθ  水平方向の運動方程式は   mrω^2 = kxsinθ なので   m(L+x)sinθω^2 = kxsinθ   m(L+x)ω^2 = kx   ω^2 = kx/m(L+x)  鉛直方向の運動方程式は   mg-N = kxcosθ   N = kxcosθ + mg    = kx・h/(L+x) ここで行き詰まってしまいました。

  • 運動方程式を求めてください

    図のような系の運動方程式を求めてください。 (ばね定数k、粘性減衰定数をcとする。) よろしくお願いします。 ダンパとねじの接合部の変位を考えて(仮にYとおく)、のちにYを消去して運動方程式を出そうとしたんですが、うまくいきません。

  • 力学(ばねの運動)についての質問です。

    力学(ばねの運動)についての質問です。 回答を読むと、大体分かるのですが、一部分からないところがあります。 問 質量mのおもりが、上端を天井に固定された軽いばね(ばね定数k)の下端に取り付けられ、鉛直線上で振動している。おもりの運動方程式を立て、運動を解け。 z軸を鉛直下向きにとった場合 運動方程式が md^2z/dt^2=mg-kzとなるまでは分かるのですが、 その後の解答が 「Z=z-mg/kとおくと、d^2z/dt^2=d^2Z/dt^2だから、上式は md^Z/dt^2=-kZ と書け、単振動の式と一致する。」 となっているのですが、なぜ d^2z/dt^2=d^2Z/dt^2 が 成り立つのかがよく分かりません。 解説よろしくお願いします。

  • 高校物理 ばねと運動方程式の関係

    高校物理を独学しています。 ばねと運動方程式の関係がよく分かりません。 ma=mg-kx という運動方程式について、加速度aも、ばねの力kxも、同じ向きになる様に思えますので、なぜ、「-kx」となるのか分かりません。 (ばねが縮んでいく時は、バネの力(kx)は、ばねの縮みの方と逆方向に働き、加速度(a)も、速度が遅くなっていくので、ばねの縮みと逆方向に力が働くと思えます。) インターネットで調べていますと、あるページに、 「ばねの伸び方向にx軸をとると、まずばねが伸びているときには、質点にはx軸の負の方向にちからがはたらきます。符号まで含めると-kxです。次に、ばねが縮んでいるときには今の力はx軸正方向にはたらきますが、このときはx座標が負になるので、結局-kxになります。」 とありますが、なぜ、「このときはx座標が負になる」となるのか分かりません。 初学者にも分かりやすい説明をお願いします。