• 締切済み
  • すぐに回答を!

lim[x→∞]f(x)の位相での定義は?

よろしくお願い致します。 『0<∀ε∈R,0<∃δ∈R;0<|x-a|<δ⇒|f(a)-f(x)|<ε』 は 『2つの位相空間(X, T)、(Y, S) と map f;X→Y と L:={b∈Y;∀ε∈nbhd(b),∃δ∈nbhd(a) such that f(δ)⊂ε}(a ∈X)に於いて、 L≠φ の時、f(x)はLに収束するといい limf(x):=L x→a と表記する。そして、L=φの時、f(x)は発散すると言う』 という具合に一般で定義できると思います。 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 に就いては、 『Bは位相空間(X*,T*)の部分集合Aの開被覆である』 の定義は 『T* の部分集合Bに於いて、A⊂∪[b∈B]b』 『位相空間(X*,T*)の部分集合Aはコンパクトである』 の定義は 『X* の部分集合Aの任意の開被覆B(⊂T*)に対し、∃{b1,b2,…,bn} ⊂B (n∈N) such that A⊂∪[i=1 to n]bi』 『位相空間(X*,T*)はコンパクト空間をなす』 の定義は 『位相空間(X*,T*)の部分集合X* はコンパクトである』 『位相空間(X,T)が位相空間(X*,T*)の中で稠密である』 の定義は 『X⊂X* 且つ φ≠∀A∈T* に対して,A∩X≠φ』 『位相空間(X*,T*)は位相空間(X,T)のコンパクト化である』 の定義は 『X* はコンパクト空間 且つ XはX* の中で稠密である』 従って、『x→∞』の定義は『xをa∈X* に近づける』を意味す るので εとδを使うと、 2つの位相空間 (X,T)、(Y,S) と map f: X → Y があり、位 相空間(X*,T*)は(X,T)のコンパクト化である時、 L:={b∈Y;∀ε∈nbhd(b,(Y,S)),∃δ∈nbhd(a,(X,T)) such that f(δ)⊂ε}(a∈X*)に於いて、 L≠φ の時、f(x)はLに収束するといい lim f(x):=L x→a と表記し、 L=φの時、f(x)は発散すると言う。 例:実数体RではX*はR∪{+∞,-∞}に相当し、a∈{+∞,-∞} と定義してみたのですが、 どんな位相空間(X,T)やコンパクト化(X*,T*)では良いという訳ではなく、 夫々に何らかの条件を付け加えねばならないような気がします。 どのような条件を付ければ 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 の一般での定義が完成しますでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数248
  • ありがとう数2

みんなの回答

  • 回答No.1
  • fjfsgh
  • ベストアンサー率16% (5/30)

これって別のところでも質問しました? そこでは次のようになっています。 1.任意の位相空間 X に対してそのコンパクト化が存在するが,よい性質を持つコンパクト化が存在するためには,X に一定の条件が必要. 2.一般には,1つの位相空間に対して多くのコンパクト化が存在する.したがって,目的に応じてコンパクト化を選ぶ必要がある. 3.位相空間 X のコンパクト化 X* に対して,X* - X には無限個の点が存在する場合がある.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答誠に有難うございます。 > これって別のところでも質問しました? はい、途中で糞妻ってしまいました。 > 1.任意の位相空間 X に対してそのコンパクト化が存在するが, > よい性質を持つコンパクト化が存在するためには, > X に一定の条件が必要. この文意は何らかの条件を私が提示した定義に付け加えないと不都合が生じるという解釈でいいのでしょうか? > 2.一般には,1つの位相空間に対して多くのコンパクト化が > 存在する.したがって,目的に応じてコンパクト化を選ぶ > 必要がある. 目的は距離空間や実数空間のε-δに当て嵌まるように定義したいのです。 その場合はどうやってコンパクト化を選べはいいのでしょうか? > 3.位相空間 X のコンパクト化 X* に対して, > X* - X には無限個の点が存在する場合がある. この文意もよくわかりません。つまり有限個の場合用と無限個場合用の定義が必要になってくるという意味なのでしょうか?

関連するQ&A

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 位相

    数学科2年のものです。 位相空間についての授業が始まったのですが、演習問題で、わからない問題があります。 初歩的な問題かもしれませんが、どなたか解答お願いします。 集合S={1,2,3,4}に部分集合族Lを L={Φ、{1}、{1,2}{1,3}{1,2,3}、S} により与える。Sの部分集合{1,2,4}をTとおく。 (1)(S,L)は位相空間であることを示せ。 (2)位相空間(S、L)においてTの内部を求めよ。 (3)位相空間(S、L)においてTの閉包、境界を求めよ。 特に(1)の位相空間の定義の、「Lに属する任意個の和集合がLに属すること」の確認の仕方に自信がないので、お願いします。

  • 連結とHausdorffについて

    宜しくお願い致します。 『(X,T)を位相空間とする。 ∃G1,G2∈T such that X=G1∪G2,G1∩G2=φ の時、Xは非連結であるという』 と載ってましたので 『(X,T)を位相空間とする。 ∀G1,G2∈T、X≠G1∪G2,G1∩G2=φ の時、Xは連結であるという』 が連結の定義かと思います。 よってこれからXの部分集合での連結の定義は 『(X,T)を位相空間とする。 φ≠A⊂Xにおいても位相空間がとれ、その位相をTaとすると ∀G1,G2∈Ta、A≠G1∪G2,G1∩G2=φ の時、Aは連結であるという』 だと思います。 間違ってましたらご指摘ください。 また、Hausdorff空間の定義は 『位相空間Xとし、X∋∀x,y:distinctにおいて X⊃∃Ux,Uy:近傍 such that x∈Ux,y∈Uy,Ux∩Uy=φ の時、XはHausdorff空間をなす』 だと思います。 Xを位相空間とし、φ≠A,B,C⊂X(但し、A⊂B⊂CでAはBの真部分集合でBはCの真部分集合)とする。 このとき、 「AとCが連結ならばBは連結になる」が偽。 と 「AとCがHausdorffならばBもHausdorffになる」が偽 を示したいのですが それぞれの反例として何が挙げれますでしょうか?

  • 位相の問題です。

    位相の問題です。 (X,Q)、(X,Q'):位相空間 X×Y={(x,y)|x∈X,y∈Y} Qx×y:=U×V{U∈Q,V∈Q'の形の任意個のX×Yの部分集合の和集合} ここで (X×Y,Qx×y):位相空間になることを示せ。 わかる方いましたらよろしくお願いいたします <(_ _)>

  • 集合・位相

    集合・位相初心者です。 授業で開集合と閉集合、近傍の定義を教えてもらったのですが、理解できず、困っています。 以下は、授業で使っているプリントに載っている定義です。 X:集合 T:Xの部分集合からなる集合族 (X,T):位相空間 とする。 Xの部分集合UがTの元であるとき、Uを開集合という。 また、Xの部分集合Fの補集合がTの元であるとき、Fの閉集合という。 点x∈Xに対して x∈U゜ を満たすXの部分集合Uを近傍という。また、このような近傍全体のなす集合族をxの近傍系といい、U(x)で表す。 具体的な例で教えて頂けると助かります。 例えば、集合X={1,2,3,4,5}、位相T={φ,{3},{4},{3,4},{1,3},{1,3,4},X}として、位相空間(X,T)をつくると、この(X,T)の開集合、閉集合、点3の近傍(点は適当に選びました)はどうなるのか。 集合・集合は初心者なので、詳しく教えて頂けると嬉しいです。 ご教授、よろしくお願い致します。

  • 直積位相定義が2個の直積の場合に合致してるか?

    直積位相の定義についての質問です。 [定義ア]位相空間(X_λ,T_λ) (λ∈Λ(Λは任意の添数集合))と射影fが与えられていて,直積集合P:=ΠX_λとおく。 この時,X_λ⊃{f_λ^-1(t_λ)∈2^P;t_λ∈T_λ}=:S_λをf_λによって誘導される(X_λ,T_λ)の位相と呼ぶ。 次に和集合B:=∪S_λと置き, この時,このBから生成される位相{U∈2^P;∀x∈U,∃b∈B such that x∈b⊂U} を直積集合Pの直積位相と呼ぶ。 が直積位相の定義だと思います。 [定義イ]2個の直積(X_1,T_1)×(X_2,T_2)の場合の直積位相は{∪[g∈G]g ;G⊂T_1×T_2}と載ってました。 [定義ウ]集合Xの部分集合族Bが以下の条件を満たすときBをXの開基という (1)BはXを被覆する (2)任意のb1,b2∈Bおよび任意のx∈b1∩b2に対して、あるb∈Bが存在して、x∈b⊂b1∩b2となる。 [定義エ] Bを集合Xの開基とする時,{U∈2^X;∀x∈U,∃b∈B such that x∈b⊂U}をBによって生成される位相という。 そこで定義アの直積位相定義が2個の直積の場合に定義イと合致してるか調べています。 まずS_1={f_1^-1(t_1);t_1∈T_1},S_2={f_2^-1(t_2);t_2∈T_2}でB:=S_1∪S_2と置く。 そしてこのBによって生成される位相は{U∈2^(X_1×X_2);∀x∈U,∃b∈B such that x∈b⊂U}:=L これが{∪[g∈G]g;G⊂T_1×T_2}:=Mに一致してるか吟味してみます。 (i) L⊂Mを示す。 ∀U∈Lを採ると,∀x∈Uに対してx∈b⊂Uなるb∈Bが存在する。 Bの定義よりb={f_1^-1(t_1),f_2^-1(t_2)}という集合になっています。 そこで結局の所,Uは常にbを含んでいなければならない訳ですからU=∪[b∈B']b (但しB'⊂B)…(1)となっていますよね。 所でBの元達はというとB:=S_1∪S_2な訳ですから(1)は U={(t_1×x_2)∪(x_1×t_2);x_1⊂X_1,x_2⊂X_2}という形になってますよね。 ここでx_1やx_2は必ずしもT_1やT_2の元とは限らないわけですよね。 なのでこのUは∪[g∈G]g;G⊂T_1×T_2には含まれませんよね。 どうすればLとMが合致しますでしょうか? それとも直積位相は2個の直積集合の場合と3個以上の直積集合の場合とでのそれぞれ直積位相の概念は異なるのでしょうか?

  • 「収束」を定義すれば、位相も定義できる?

    位相空間では、点列の収束という概念が定義されていると思います。手元に適当な本がないので、不確かな記憶ですが、 位相空間Xの点列(a_n)がαに収束する ⇔αを含む任意の開集合Oについて、あるNが存在して、n≧Nならばa_n∈Oである という雰囲気の定義だったと思います。(nは自然数のような離散的な値ではなくてもよいはずですが、自然数と考えて問題ありません) さて、ある空間X上の点列(a_n)に対して「収束(極限)」の概念を定義したとしたとします。 この時、空間Xに適当な位相構造を入れてやる事で、位相空間Xにおける収束と、ここで定義した収束が一致するようにする事は可能でしょうか?(もし、必要なら、Xはベクトル空間としても構いません) そもそも何を「収束」と呼ぶべきかすら分からないですが、一般的な定義あるのであればその定義と考えて差し支えありません。(ないのであれば、困ってしまうのですが、きっとあるでしょう) 具体的な例としては、ヒルベルト空間の線型演算子には、「弱収束」や「強収束」と言った概念がありますよね。これらの意味の収束を与える位相は存在するのか、という事です。(具体的にどう構成するのかは知りませんが、「弱位相」とか「強位相」と呼ばれる位相があったと思います)

  • 位相空間の問題についてです。以下の問題がわかる方い

    位相空間の問題についてです。以下の問題がわかる方いましたら、一問でもいいので、教えてくださると助かります…! 次の各集合が開集合あるいは閉集合いずれであるか判定せよ。 (1) (1,4)U{5}(Rの部分集合として) (2) {( x , y )∈R^2 ; 3 < x + y , x^2 > y}(R^2の部分集合として) (3) {( x , y , z )∈R^3 ; x^2 + y^2 + z^2≦ 1}(R^3の部分集合として)

  • わからない教えてください。位相数学

    http://oshiete1.goo.ne.jp/qa2672839.htmlで質問したものです。位相数学でわからないことがあります。教えてください 松坂和夫の集合・位相入門(44刷)の第4章についてわかりません。 甲) p152にこんなことが書いてあります。ただ、ここにQに似た文字が出てきて、Qを横にしたものがでてきます。いかこのQをよこ向きにしたものをQと表記します。またфの表記は本当はこれではありません。なんかみたことない記号です。似ているこのфで代用します。φは空集合のきごうです。 Sを一つの空でない集合とする。Sの部分集合系(すなわちф(S)の部分集合系)が次の3条件をみたすとき、QはSにひとつの位相構造を定める。あるいは簡単に、QはSにおける一つの位相であるという。 Oⅰ)S∈Qおよびφ∈Q Oⅱ)Ο1∈Q、Ο2∈QならばΟ1∩Ο2∈Q Oⅲ)(Ολ)λ∈∧ をQの元からなる任意の集合族(すなわち、添数集合∧は任意の有限または無限集合で、すべてのλ∈∧に対してΟλ)とすれば∪Ολ∈Q  と表記されています。なおΟλというのはΟλのλは添え字でちっちゃいです。Ο1も同様に数字は添え字です。正直書いてある意味がわかりません。これは定義だとおもうのですが。考えたのですが、前の質問の ”空でない集合Xの位相Oとはなにか”でXがSに対応して、OがQに対応するんですか? 乙) (S、Q)を一つの位相空間とする。以下これをSと書く。この位相空間の閉集合系をΨとする。 Q∩Ψ={S、φ}であるとき、位相空間Sは連結である。と明記されていますが、これも意味がわかりません。 この二つの事柄について教えてもらえないでしょうか?具体的な事例を示してもらえれば納得できるかも。

  • 相対位相について教えて下さい!!!!!!!!!

    (X,O)を位相空間、A⊂X、O|AをAの相対位相、X=R,Oを1次元ユークリッド位相、A=[0,1]とする。 部分位相空間(A,O|A)で、Aの部分集合B=(1/2,1]の内部と閉包を求めよ。 という問題なのですが・・・。相対位相がイマイチ分かりません(。。;) BもAの相対位相になるんじゃないんですか・・・? 分かる方お願いしますm(__)m