• ベストアンサー
  • すぐに回答を!

二等辺三角形においての余弦定理教えてください!!

角B=角C=30度の二等辺三角形ABCにおいて  BC=2ABcos30° と問題の解答はなっています。 で自分なりに余弦定理を使ってこの式を導こうとしました。 すると  BC=2AB√cos(180°-2x30°)   =2AB√cos(120°) となりました。 どうやって  √cos(120°)=cos30° になってるんですか?? そもそも僕の式の導き方まちがってるんでしょうか?? わかるかた教えてください!!

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数2058
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • CP20
  • ベストアンサー率30% (17/56)

cos120°=-1/2 cos30°=(√3)2 ですので 間違ってますネ。 余弦定理 を使用する問題ではないような気がします 実際に図を書いて 中心をBとして半径をBCとした円を書いて みると底辺BCの半分の値がABcos30°になっていること がわかるかと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほどぉー!! よくわかりました!!当たり前のことだったんですね!! ありがとうございました!!

その他の回答 (1)

  • 回答No.2

余弦定理なら(BC)^2=(AB)^2+(AC)^2-2(AB)(AC)cos120° =(AB)^2+(AC)^2+(AB)(AC) AB=ACより (BC)^2=3((AB)^2) BC=√3*AB =2AB*((√3)/2)   =2ABcos30° これは殆ど笑い話の式変形で貴殿がどう間違ったのかを検証するために やってみただけです 結局エラーの原因は不明です さて、題意は書いてないのでわかりませんが 解答(というより解答の途中で)のBC=2ABcos30°は (AB)cos30°=(1/2)(BC)  といってるだけです さらに疑問なら、コサインの定義より cos30°=[(1/2)BC]/(AB)  です

共感・感謝の気持ちを伝えよう!

質問者からのお礼

おっしゃるとおりものすごい笑話のようなことをしていました。 完璧に頭ががちがちになっていました。 丁寧に解説していただいてありがとうございました!!

関連するQ&A

  • 余弦定理について質問です。

    余弦定理について質問です。 AB=AC=x、BC=2、A=135°の二等辺三角形ABCがある。x2乗の値を求めよ という問題なんです。 回答は 余弦定理より、4=x2乗+x2乗-2x2乗cos135°これより、x2乗=4/2+√2=4-2√2 なんです。 だけど納得出来ないんです 4=x2乗+x2乗-2x2乗cos135° まではわかります。 だけどその後自分の考えでは 4=2x2乗+√2x2乗 4/2+√2=2x2乗 x2乗=1-√2 となりました。 自分の回答には全く自信はありません。 だけどこれ以外思い浮かびません(泣) どこが間違っているのか教えて下さい。お願いします。

  • 余弦定理というのでしょうか

    余弦定理というのでしょうか a^2=b^2+c^2-2bc*cosθ の式で b、cを同じ値に二等辺三角形にしてxにし cosθが二等辺の間の角度で値はわかっています aの値もわかっています この場合の方程式はどの様になるのでしょうか? 値を当てはめればできるのですが どうも文字の方程式になると........ 出したいのはx(b、c)です x(b、c)=------ としたいのですが よろしくお願いいたします

  • 正弦定理・余弦定理

    三角形の頂点A,B,Cについて 2sinA=cosB・sinCが成立するとき、三角形ABCが二等辺三角形となることがあるか。という問題なんですけど、辺BC,CA,ABの長さをa,b,cとすると、正弦定理で左辺=a/R,正弦定理と余弦定理で右辺=(c^2+a^2-b^2)/2ca・c/2R=(c^2+a^2-b^2)/4aR よって、a/R=(c^2+a^2-b^2)/4aR よって、c^2=3a^2+b^2となるところまではわかるんですけど、この後どうすれば良いのかわかりません。

  • 余弦定理をどのように使えば・・・?

    原点中心、半径rの円に内接する正三角形をABC、弧BC上の点をPとする。AP2乗+BP2乗+CP2乗が一定値をとることを示せ。なお、AP=BP+CPであることを使ってもよい。  (→AP2乗+BP2乗+CP2乗をrの式で表せば良い。) この問題を昨日から考えているのですが解けません。 先生からは、余弦定理を使うと解ける、と言われました。 私は、△APC、△ABP、△BPCで余弦定理を使って、  AC2乗=CP2乗+AP2乗-2AP・CP・cos60°  AB2乗=BP2乗+AP2乗-2BP・AP・cos60°  BC2乗=BP2乗+CP2乗-2PB・PC・cos120° と出し、これをすべて足したのですが、どうしてもPBとPCが消去できません。 この方法では間違っていますか。また、余弦定理を使った正しい回答も、教えていただきたいです。

  • 二等分線定理の余弦定理による証明

     三角形ABCにおいて、角Aの二等分線を引き、BCとの交点をDとします。AB=a、AC=b、BD=c、CD=dとすると、a:b=c:dとなります。俗に二等分線定理と呼ばれるものですが、これを余弦定理によって証明する方法を教えていただけますでしょうか。  証明法は数ほどありますが、余弦定理を使ったやり方がわかりません。 

  • 余弦定理と内積

    余弦定理の一般的な公式は a^2=b^2+c^2-2bc・cosθ と表されますが、なぜピタゴラスの定理(直角三角形)に -2bc・cosθ を加える必要があるのでしょうか? また、 bc・cosθ だけみるとこれは <内積>:|a||b|cosθ とも見て取れる気がします。(あくまで僕個人の意見なんですが) もしかして余弦定理と内積の公式というのは関係性があるんでしょうか? そもそも内積の存在意義自体、僕は理解できていません。 僕は文系で物理のスカラーというものを知らないのでそういう人でも分かるような説明があるならば非常にありがたいです。

  • 余弦定理について。

    △ABCについて、余弦定理を用いて次の値を求める。 (1),b=1,c=2,A=120°のときのaの値 a^=1^+2^-2×1×2×cos120° 1+4-4×(-1/2)=7 a=√7 (2),a=√13,b=3,c=4のときの角Aの値 √13^=3^+4^-2×3×4cosA13=9+16-24cosA 24cosA=25-13=12 cosA24/48=1/2 A=60° これでいいのか解説お願いします。

  • 二等辺三角形 三角比

    Bを左下、Cを右下の底角 Aを頂角とした二等辺三角形ABCがあります。 ABとACの長さは70m、∠ABCと∠ACBは40°という指定があり、このときBCの長さを求めよ。という問題があります。BCをXとおきます。 また、必要であれば、次の三角比を利用すること。とあります。 sin40°=0,6428 cos40°=0,7660 tan40°=0,8391 与えられた情報のなかで、今まで習ってきた直角三角形上、底辺と斜辺を結ぶ角が45°30°60°のときに利用できる三角比の公式、ないしは単位円をつかった定義、鈍角と補角・余角の公式が、うまく利用できる方法がみつからず、困っています。 また向かい合う辺と2角の値がわかっているので、正弦定理をうまく利用できないかと思い、 二等辺三角形ABCを半分カットした△ABH(BCの中点をHとした直角三角形)を抜き出して、BHをX とおいて、 X/sin50°=70/sin90° X=70×sin50°/1 X=・・・ とがんばりましたが、sin50°の値はわかりませんし、自力で求めるレベルの問題でもないかと思われます。 どなたか、解法のコツを御教授いただけないでしょうか?

  • 余弦定理を用いた問題

    こんばんは。いつもお世話になっております。 問題集を解いていてどうしてもわからない問題があるので、解き方・考え方を教えてください。 問題1) 四角形ABCDが、半径64/8の円に内接している。この四角形の周の長さが44で、辺BC=辺CD=13であるとき、残りの2辺ABとDAの長さを求めよ。 自分なりに考えてみたのですが、ABとDAに関する方程式を2つ立てて連立させるのかと思ったのですが、AB+DA=18しか思いつきません。半径64/8の円に内接していることから、正弦定理を使おうと思っても角の大きさが一つも分かっていないため使うことができません。。 問題2)四角形ABCD(問題1とは別)において、BC=2,CD=3,∠DAB=60度(π/3),∠ABC=∠CDA=90度(π/2)とする。このとき、辺AB,辺DAの長さを求めよ。 この問題は、対角線ACを引き、2つできる直角三角形について三平方の定理でAC^2=の形にして、2つを連立させて整理すると、AD^2=AB^2+1という式が出てくるのですが、この式を解くにはもうひとつ式が必要です。どうやって出せばいいのでしょうか? 両方ともおそらく余弦定理や正弦定理を使うのかと思うのですが、どちらも適用できません。。もう2時間近く粘っていますがいっこうに解けません。どうかお力をお貸しください。よろしくお願いいたします。

  • 二等辺三角形で・・・

    二等辺三角形ABC(AB=AC)の頂点Aから対辺BCへ垂線ADをひいたときにBD=CDとなることの理由は、「二等辺三角形の性質だから」で済ませてよいのでしょうか。 それとも、「△ABDと△ACDの合同」を示さなければいけないでしょうか。