• ベストアンサー
  • 暇なときにでも

余弦定理というのでしょうか

余弦定理というのでしょうか a^2=b^2+c^2-2bc*cosθ の式で b、cを同じ値に二等辺三角形にしてxにし cosθが二等辺の間の角度で値はわかっています aの値もわかっています この場合の方程式はどの様になるのでしょうか? 値を当てはめればできるのですが どうも文字の方程式になると........ 出したいのはx(b、c)です x(b、c)=------ としたいのですが よろしくお願いいたします

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数133
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • ONEONE
  • ベストアンサー率48% (279/575)

b=c=xとして下の式に代入すればxが出てくると思うのですが。 a^2=x^2+x^2-2x^2*cosθ =2x^2(1-cosθ)     ←2x^2でくくった x^2=a^2/2(1-cosθ)   ← x^2=・・の式にする x=√[a^2/2(1-cosθ)]=a/√[2(1-cosθ)]  

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます 助かりました。 自分が学がないのがよくわかります。(泣

その他の回答 (1)

  • 回答No.2

b=c=Xとして a^2=2X^2・(1-cosθ) となるので, 左辺は正より,右辺も正で0でなく, X^2=a^2/2(1-cosθ) (>0) X=a/√{2(1-cosθ)}・・・(1) あるいは,もしもsin(θ/2)の値がきれいに出るならば,図を描けばすぐに分かりますが,直角三角形を利用して[または(1)から半角公式の利用により] X=a/{2sin(θ/2)} とも書けます.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

助かりました いろんなやり方があるんですね 勉強します。

関連するQ&A

  • 余弦定理について質問です。

    余弦定理について質問です。 AB=AC=x、BC=2、A=135°の二等辺三角形ABCがある。x2乗の値を求めよ という問題なんです。 回答は 余弦定理より、4=x2乗+x2乗-2x2乗cos135°これより、x2乗=4/2+√2=4-2√2 なんです。 だけど納得出来ないんです 4=x2乗+x2乗-2x2乗cos135° まではわかります。 だけどその後自分の考えでは 4=2x2乗+√2x2乗 4/2+√2=2x2乗 x2乗=1-√2 となりました。 自分の回答には全く自信はありません。 だけどこれ以外思い浮かびません(泣) どこが間違っているのか教えて下さい。お願いします。

  • 二等辺三角形においての余弦定理教えてください!!

    角B=角C=30度の二等辺三角形ABCにおいて  BC=2ABcos30° と問題の解答はなっています。 で自分なりに余弦定理を使ってこの式を導こうとしました。 すると  BC=2AB√cos(180°-2x30°)   =2AB√cos(120°) となりました。 どうやって  √cos(120°)=cos30° になってるんですか?? そもそも僕の式の導き方まちがってるんでしょうか?? わかるかた教えてください!!

  • 余弦定理をどのように使えば・・・?

    原点中心、半径rの円に内接する正三角形をABC、弧BC上の点をPとする。AP2乗+BP2乗+CP2乗が一定値をとることを示せ。なお、AP=BP+CPであることを使ってもよい。  (→AP2乗+BP2乗+CP2乗をrの式で表せば良い。) この問題を昨日から考えているのですが解けません。 先生からは、余弦定理を使うと解ける、と言われました。 私は、△APC、△ABP、△BPCで余弦定理を使って、  AC2乗=CP2乗+AP2乗-2AP・CP・cos60°  AB2乗=BP2乗+AP2乗-2BP・AP・cos60°  BC2乗=BP2乗+CP2乗-2PB・PC・cos120° と出し、これをすべて足したのですが、どうしてもPBとPCが消去できません。 この方法では間違っていますか。また、余弦定理を使った正しい回答も、教えていただきたいです。

  • 余弦定理と内積

    余弦定理の一般的な公式は a^2=b^2+c^2-2bc・cosθ と表されますが、なぜピタゴラスの定理(直角三角形)に -2bc・cosθ を加える必要があるのでしょうか? また、 bc・cosθ だけみるとこれは <内積>:|a||b|cosθ とも見て取れる気がします。(あくまで僕個人の意見なんですが) もしかして余弦定理と内積の公式というのは関係性があるんでしょうか? そもそも内積の存在意義自体、僕は理解できていません。 僕は文系で物理のスカラーというものを知らないのでそういう人でも分かるような説明があるならば非常にありがたいです。

  • 正弦定理・余弦定理

    三角形の頂点A,B,Cについて 2sinA=cosB・sinCが成立するとき、三角形ABCが二等辺三角形となることがあるか。という問題なんですけど、辺BC,CA,ABの長さをa,b,cとすると、正弦定理で左辺=a/R,正弦定理と余弦定理で右辺=(c^2+a^2-b^2)/2ca・c/2R=(c^2+a^2-b^2)/4aR よって、a/R=(c^2+a^2-b^2)/4aR よって、c^2=3a^2+b^2となるところまではわかるんですけど、この後どうすれば良いのかわかりません。

  • 余弦定理

    余弦定理 余弦定理ですが  (1)△ABCにおいて a=8 b=5 c=7 の時 cosAの値を求めよ。  同じく(2) a=4 b=5 c=6 の時 cosAを求めよ。  (1)は 1/7 (2)は2/3 となってしまいます。角度で表すのですか? 高一の ワークです。教えてください。

  • 余弦定理について。

    △ABCについて、余弦定理を用いて次の値を求める。 (1),b=1,c=2,A=120°のときのaの値 a^=1^+2^-2×1×2×cos120° 1+4-4×(-1/2)=7 a=√7 (2),a=√13,b=3,c=4のときの角Aの値 √13^=3^+4^-2×3×4cosA13=9+16-24cosA 24cosA=25-13=12 cosA24/48=1/2 A=60° これでいいのか解説お願いします。

  • 計算(余弦定理)について

    計算(余弦定理)について a^2+b^2+ab=100 a^2+c^2+ac=75 c^2+b^2+bc=25 とういう3つの式と3つの文字(a,b,cは実数)があります。 この3式を満たすa,b,cが求まりません! わかるかたご教授お願いします。

  • 余弦定理などから角度を求めたい

    余弦定理などで得た値を角度に変換したい場合はどうすれば良いのか迷っています。 具体的には例えば sin30゜なら 1/2 cos60゜なら 1/2 sin90゜なら 1 cos90゜なら 0 などという風に求められるかと思いますが、 たとえばsinの1/2なら30度、とか cosの0なら90度、とか逆から求めることはC言語の標準関数などで可能なのでしょうか?

  • 余弦定理についての説明ができず困っています。

    明日妹が数学の試験なのですが、余弦定理について 教えてほしいと言われたのですが、聞かれた本人も余弦定理の意味を 分かっておらず、教えてあげたくても教えてあげれず困っています。 余弦定理について詳しく解説されているようなサイト様とか ありませんでしょうか…。 もしくは数学に自身のあられる方で余弦定理について教えていただけないでしょうか? ちなみに妹は高校一年生(数IA)で、sin cos tanの意味も分かっていない状態です。 どうかよろしくお願いいたします。