• ベストアンサー

直積集合の元は必ず集合となる?

noname#221368の回答

noname#221368
noname#221368
回答No.4

 普段はここまで注意して数学書を読んでいないので、この疑問は新鮮でした。  まず#1さん,#2さんの仰っていることは全く正しいのですが、次のような怠慢な読み方も可能ではあります。   A×Bは集合の集合である。しかしAやBの要素は、集合でもそうでなくても、どちらでも良い。  恐らくですがYYoshikawaさんは、<a,b>={{a},{a,b}}を見たとき、   A={{a},{a'},・・・},B={{b},{b'},・・・} でなければならない、というようなイメージが浮かんだのではないかと想像しました。そうではありません。   A={a,a',・・・},B={b,b',・・・} でも<a,b>の作成(ここが重要です)は可能です。要は、Aからa,Bからbを選んだ時に、a,bの順序で順序対<a,b>∈A×Bが決まれば良いだけだというのが、<a,b>={{a},{a,b}}の趣旨です。実際a∈Aとb∈Bを指定した時点で、この定義によりa,bはa,bの順序に並びます。同語反復っぽくてわかりにくいですが、集合論にはprojection(射影)と呼ばれる、これとは反対の操作があります。それを関数pr_Aとかで表し、   pr_A(<a,b>)=a となります。要は、集合の集合<a,b>から、それの材料aを取得するという関数です。圏論ではprojectionの逆の操作を表す関数をまさに用意し、その関数が<a,b>={{a},{a,b}}のかわりになっていた気がします。関数なので、その定義域AやBの要素、aやbは「集合であろうがなかろうが、知った事か!」です。  余談ですが、 >aを要素した時,どうやってこれを集合にさせれるのか? については、   aと{a}(← 同じじゃん!) というのが、私のいい加減な感覚です(もちろん厳密には違います)。

YYoshikawa
質問者

お礼

ご回答有難うございます。 > A×Bは集合の集合である。しかしAやBの要素は、 > 集合でもそうでなくても、どちらでも良い。 怠慢な読み方しなかったら 非集合の場合は順序対の定義ができませんよね。 > 恐らくですがYYoshikawaさんは、<a,b>={{a},{a,b}}を見たとき、 > A={{a},{a'},・・・},B={{b},{b'},・・・} > でなければならない、というようなイメージが浮かんだのでは > ないかと想像しました。そうではありません。 うーん、そうではありません。 「a,bをそれぞれある集合の元として<a,b>:={{a},{a,b}}と定義し、順序対と呼ぶ。」 なら納得したのですが 「a,bを集合として<a,b>:={{a},{a,b}}と定義し、順序対と呼ぶ。」となっていたので、 えー!!、R×R∋(√2,1/2)の√2や1/2は集合だったの!? と驚いてしまったのです。 厳密な議論をする場合、 「a,bをそれぞれある集合の元として<a,b>:={{a},{a,b}}と定義し、順序対と呼ぶ。」 という定義だと何かまずい事が発生するのでしょうか?

関連するQ&A

  • 直積集合の作り方について

    こんにちは。 物理学を学んでいる学生ですが数学を独学で勉強中で直積集合の構成について質問があります。 目的は直積集合で座標軸xを構成することとします。 このとき、 ある添数集合N(自然数)を定義し、その元をλとします。(λ=1,2,3,・・・) この時、Nによって添数づけられた集合族 (A)λ∈N を定義しておいて、 この集合族Aを(-λ, λ)としておく。 全ての添数λ(∈N)についての集合族Aの和集合で直積集合を構成することにする。 このとき、Aの和集合で構成される直積集合は(-∞,∞)の集合となりますか? この考え方で座標軸x軸を構成できると思いました。 この考え方は正しいですか? また、間違っているならどこが間違っているか教えてください。 お願いします

  • 「直積集合の全集合」とは?

    別の方の質問 http://oshiete1.goo.ne.jp/qa4877672.html を見ていて気になった点についてです。 「集合族の空集合と全集合」とは何でしょうか? 通常、「空集合」や「全集合」は、何らかの集合の ベキ集合族に対して定義される概念かと思います。 一般の集合族に対する「全集合」とは、どのように 定義されるのでしょう? 「集合族Φの全集合」と言ったら、Φ自身のことでしょうか、 それとも、Φの最大元のことでしょうか? ご存知の方、解説よろしくお願いします。 先の http://oshiete1.goo.ne.jp/qa4877672.html の例で言えば、 ΨとΩの集合族としての直積は、質問氏の書いている Ψ×Ω = { (A,B) ; A∈Ψ, B∈Ω } ですが、これは、 ベキ集合族ではないし、σ集合族でもありません。 Y と Z の空間としての直積に付随するσ集合族 という意味で 言っているのだとすれば、「直積」は、このΨ×Ωではなく、 Ψ×Ωの任意個の元の和集合全体が成す集合族 になるハズです。 その際、「全集合」が Y×Z であることは違いありませんが… また、A×0 = 0×B = 0 と考えるなら、この式の「×」を 0 と B の集合としての直積と解釈したことになります。 Ψ×Ω = { A×B ; A∈Ψ, B∈Ω } と表記するのならば、 右辺内の A×B は、A と B の対 (A,B) という意図で 標準的でない書き方をしてしまったものと解釈すべきで、 A と B の集合としての直積ではありえません。 その場合、0×B は、Ψ×Ωの元で Y成分が 0、Z成分が B の ものであって、空集合ではありません。

  • 直積集合の元の個数

    直積集合で集合Aと集合Bの元の個数は同じ元が有ってもAの個数+Bの個数でいいのでしょうか、それともA∪Bなのでしょうか教えてください。

  • 直積集合について質問です

    直積集合について質問です。 直積集合を定義することによってどのような利点が生まれるのですか? また集合Aと集合Bの直積集合において、集合Aの部分集合fを要素と考えて集合Bの要素と部分集合fを組にすることは可能ですか?

  • 情報数学 直積と関係

    大学でコンピュータの基礎となる情報数学を学んでいる者です 教授はただプリントに書いてある定義を述べるだけで、結局どういうものなのか、またどういう捉え方をしておけばよいのかを教えてくれません。 「直積とはA,Bを集合とするとき、C=A×B={(x,y)x∈A、y∈B}」 としか書いてありません。直積とはどういう概念なんでしょうか? 「直積の部分集合Rを関係Rという。」「(a,b)∈RをaRbと書く。」 なども記号の使い方(a,b)∈Rがよく分りません。 どういった形でこれらのことを頭に入れておけば良いのか、是非回答をお願いします。 もしできればこういった事を分かりやすく説明してくれる教科書、参考書等があれば教えていただけるとうれしいです<m(__)m>

  • 集合論の直積

    集合論の直積でつまずいています.和集合などはベン図に描いて理解しやすいのですが,直積に関してはイメージも沸かず,困っています. 以下は,○か×かどちらになるかの理由を考えていますが,解らない状態です.どなたか集合論にお強い方,お知恵を拝借させてください. 1.(Π_[i∈N]Ai)^c=Π_[i∈N](Ai)^c 2.A*(∪_[i∈N]Bi)=∪_[i∈N](A*Bi) 3.A^c*B^c*C^c⊂(A*B*C)^c 4.任意のi∈NについてAi⊂Biであれば,Π_[i∈N]Ai⊂Π_[i∈N]Bi 5.Π_[i∈N]Ai=φ⇒∀i∈N,Ai=φ

  • 集合論 直積集合の定義式

    直積集合の定義を,冪(ベキ)集合を用いているものがあります. 直積集合自体の意味は,たとえば,X×Yで,デカルト平面を想像すればわかります. その定義式は, 集合X,Yについて { (x,y)∈ B(B(U{x,y})):x∈X,y∈Y } ただし,B(・)は,冪集合を表す記号. また,U{・}は,和集合を作る記号で,A U B U C U・・と同じです. 冪集合でまた冪集合を作るような記号らへんのところも特に分かりづらいです.

  • 直積集合の空集合と全集合

    σ集合体Ψ、Ωを使って、(*)のように直積をとった集合族の空集合と 全集合は何になるんでしょうか?ちなみに、Ψは集合Y、Ωは集合Zを もとに作られているとします。 {A×B; A∈Ψ, B∈Ω} (*) 空集合を0で表記すると、(*)の空集合は0×0、全集合はY×Zと思った のですが、正しいでしょうか。また、0×BやA×0はどう扱うのでしょうか。 Y×BとA×Zは全集合ではないというのはなんとなくわかるのですが…。 よろしくお願いします。

  • 直積と関数について

    選択公理の解説などにおいて直積の定義がありますが、 ΠSλ(λ∈Λ)={f|f:Λ→∪Sλ fλ∈Sλ} とするのが多いと思います。(つまりΛから∪Sλへの関数の内、ある条件を満たすもの全体) しかし、私は関数というのは二項関係などと同じように直積の部分集合として定義されるものと考えていました。(上の例では、fはΛ×∪Sλの部分集合) そのため、関数と直積をどちらから定義すればよいのか混乱しています。 おそらく、原因は私が、純集合論的な立場から直積、関数も一つの集合として定義しようとしているにもかかわらず、集合の記法を厳密に決めていないため(一階述語論理の言語と=、∈以外のものを勝手に使用している)だと感じるのですが、この理解自体どこかおかしなところがあるでしょうか? また、見通しのよい考え方、捉え方等教えていただければ幸いです。この方面に詳しい方々、時間に余裕があればお答えください、よろしくお願いします。

  • 数学書の名著、お薦め教えてください

    はじめて、投稿します。よろしくお願いします。 私の数学のレベルは、高校卒業ぐらいです。 大学1-2年レベルから始めたいと思っています。 目標は、数学の厳密な基礎概念に基づいた数学体系全般・数学的方法全般の習得においています。 今、高校以上の数学書で所蔵しているのは、『微分積分概論』(越昭三監修/高橋泰嗣・加藤幹雄共著) 『数学小事典』(矢野健太郎編) 『数学英和・和英辞典』(小松勇作編) 自分なりに、数学書を本屋などで見たのですが、素人ですので、どれも大同に思えてしまいます。 そこで、最初に読むべき名著だという数学書は、ないでしょうか? また、『教えて!goo』で以前の投稿を閲読したのですが、最初は「集合論」あるいは「数学基礎論」あるいは「実数論」と人によって見解が分かれていて、どの分野から手をつけるべきか迷っています。 どこから手をつけるべきでしょうか? また、大体の流れは、「数学基礎論」「実数論」「集合論」→「線型代数」「微積分」→「群論」でいいのでしょうか?そうすると、位相幾何学、微分幾何学、代数学、解析学は、どのタイミングで学べばいいでしょうか?