• ベストアンサー

情報数学 直積と関係

大学でコンピュータの基礎となる情報数学を学んでいる者です 教授はただプリントに書いてある定義を述べるだけで、結局どういうものなのか、またどういう捉え方をしておけばよいのかを教えてくれません。 「直積とはA,Bを集合とするとき、C=A×B={(x,y)x∈A、y∈B}」 としか書いてありません。直積とはどういう概念なんでしょうか? 「直積の部分集合Rを関係Rという。」「(a,b)∈RをaRbと書く。」 なども記号の使い方(a,b)∈Rがよく分りません。 どういった形でこれらのことを頭に入れておけば良いのか、是非回答をお願いします。 もしできればこういった事を分かりやすく説明してくれる教科書、参考書等があれば教えていただけるとうれしいです<m(__)m>

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.2

>教授はただプリントに書いてある定義を述べるだけで、結局どういうものなのか、またどういう捉え方をしておけばよいのかを教えてくれません。 なぜ先生に聞かないのですか?そういわないのですか? 聞けば教えてくれますし, もし教えてくれないならば問題なので, そのときはしかるべき行動をしましょう. 大学は高校までとは違います. 「学びたい人間が自分で学ぶ」というのが (建前上かしれませんが)大前提ですので, 高校や予備校のように手取り足取りではありません. >「直積とはA,Bを集合とするとき、C=A×B={(x,y)| x∈A、y∈B}」 これはそのままです. 二つの集合の要素をペアにしたものを直積というだけです. 一番簡単な例は「座標平面」.直線と直線の直積が平面です. まさに座標そのものでしょう? >「直積の部分集合Rを関係Rという。」「(a,b)∈RをaRbと書く。」 >なども記号の使い方(a,b)∈Rがよく分りません。 これは確かに最初は分かりにくいですが そう思ったら先生にその場で聞くんです. 例えば,平面で考えます. 平面の部分集合として「45度の直線 y=x」を考えます. このとき「45度の直線 y=x」という部分集合Rは R={(x,y) | y=x} と表現できます. ここで,「点(a,b)が45度の直線 y=x 上にある」というのは aとbで表わすと a=b と表現できます. すなわち, 「平面の部分集合R」というのは, 「座標(a,b)が満たす何かの関係で定義されている」 ので, 平面の部分集合そのものを (a,b) と表現したときの aとbの「関係」と表現することができるのです. 「45度の直線y=x」の例でいえば 二つの数a,bについて 「a=bという関係」は「座標(a,b)でa=b」と同じで, 「座標(a,b)でa=b」は 「座標平面でy=xという直線」と同じということです. すなわち,「a=b」は「45度の直線」なのです. これを逆手にとると 部分集合そのものを「関係」と定義し, その部分集合に属していること((a,b)∈R)が 「関係がある」となり それを見やすいように aRb と「R」が「=」や「>」などのような 関係を表わすよく使う記号のように書いているのです. 分かりにくかったら自分で例を作ってみましょう 例えば, a>b に相当する「部分集合R」を作ってみましょう 「aとbが等しくない」に相当する部分集合Rは? 理解できればこれが単に,高校数学の 「図形と方程式」とか「領域」の話の 言い換えと拡張であるいことが分かります.

herobushi
質問者

お礼

授業中はなんとか理解できたと思っていたんですが、忘れてしまって…(笑)次回までに一通り理解したいと考えて質問させてもらったんです でも回答ありがとうございます、よく理解できました

その他の回答 (1)

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

>直積とはどういう概念なんでしょうか? まんま、ペアということ。 男の集合Aと女の集合Bがあれば、A×Bはカップルとして成立するすべての可能性の集合ということね。(同性愛者はどうするんだ、とか言わないように) Aの要素 a とBの要素 b に関係があるかないかをA×Bの部分集合Rとして定義します。例えば婚姻関係を考えることは、A×Bで「結婚しているペア全体の集合」を考えるということです。 (a, b) ∈ R を関係という概念を強調するために、別の表記 aRb を使うこともある。雰囲気は a (is married with) b

herobushi
質問者

お礼

a (is married with) b は分りやすいです。回答ありがとうございました、なんか難しく考えすぎてたようです

関連するQ&A

  • 集合論 直積集合の定義式

    直積集合の定義を,冪(ベキ)集合を用いているものがあります. 直積集合自体の意味は,たとえば,X×Yで,デカルト平面を想像すればわかります. その定義式は, 集合X,Yについて { (x,y)∈ B(B(U{x,y})):x∈X,y∈Y } ただし,B(・)は,冪集合を表す記号. また,U{・}は,和集合を作る記号で,A U B U C U・・と同じです. 冪集合でまた冪集合を作るような記号らへんのところも特に分かりづらいです.

  • 直積集合の元は必ず集合となる?

    度々すいません。また数学基礎論での質問です。 a,bを集合として<a,b>:={{a},{a,b}}と定義し、順序対と呼ぶ。 そして、 A×B:={<a,b>;(a∈A)∧(b∈B)}と定義し、A×Bを直積集合と呼ぶ。 と記載されているのですが、 これだとAやBは集合系(集合が元であるような集合)でa,bは集合ですよね。 (A×Bの元<a,b>は2^(2^(A∪B))の元?) でも 通常、数学基礎論以外の教科書(微分積分や線形代数)ではA×Bの元は集合でない場合で定義されてますよね。 A×B:={<a,b>;(a∈A)∧(b∈B)}が直積集合の定義で微分積分や線形代数での直積集合の定義も含んでいるのなら、 元は集合にも成りうるのでしょうか? 具体的には a,bを集合として<a,b>:={{a},{a,b}}と定義し、A×B:={<a,b>;(a∈A)∧(b∈B)}と定義するのなら実数体の直積集合R×Rの元(例えば(√2,1/2))は集合と言ってもいいのでしょうか?

  • 「直積集合の全集合」とは?

    別の方の質問 http://oshiete1.goo.ne.jp/qa4877672.html を見ていて気になった点についてです。 「集合族の空集合と全集合」とは何でしょうか? 通常、「空集合」や「全集合」は、何らかの集合の ベキ集合族に対して定義される概念かと思います。 一般の集合族に対する「全集合」とは、どのように 定義されるのでしょう? 「集合族Φの全集合」と言ったら、Φ自身のことでしょうか、 それとも、Φの最大元のことでしょうか? ご存知の方、解説よろしくお願いします。 先の http://oshiete1.goo.ne.jp/qa4877672.html の例で言えば、 ΨとΩの集合族としての直積は、質問氏の書いている Ψ×Ω = { (A,B) ; A∈Ψ, B∈Ω } ですが、これは、 ベキ集合族ではないし、σ集合族でもありません。 Y と Z の空間としての直積に付随するσ集合族 という意味で 言っているのだとすれば、「直積」は、このΨ×Ωではなく、 Ψ×Ωの任意個の元の和集合全体が成す集合族 になるハズです。 その際、「全集合」が Y×Z であることは違いありませんが… また、A×0 = 0×B = 0 と考えるなら、この式の「×」を 0 と B の集合としての直積と解釈したことになります。 Ψ×Ω = { A×B ; A∈Ψ, B∈Ω } と表記するのならば、 右辺内の A×B は、A と B の対 (A,B) という意図で 標準的でない書き方をしてしまったものと解釈すべきで、 A と B の集合としての直積ではありえません。 その場合、0×B は、Ψ×Ωの元で Y成分が 0、Z成分が B の ものであって、空集合ではありません。

  • 直積集合の作り方について

    こんにちは。 物理学を学んでいる学生ですが数学を独学で勉強中で直積集合の構成について質問があります。 目的は直積集合で座標軸xを構成することとします。 このとき、 ある添数集合N(自然数)を定義し、その元をλとします。(λ=1,2,3,・・・) この時、Nによって添数づけられた集合族 (A)λ∈N を定義しておいて、 この集合族Aを(-λ, λ)としておく。 全ての添数λ(∈N)についての集合族Aの和集合で直積集合を構成することにする。 このとき、Aの和集合で構成される直積集合は(-∞,∞)の集合となりますか? この考え方で座標軸x軸を構成できると思いました。 この考え方は正しいですか? また、間違っているならどこが間違っているか教えてください。 お願いします

  • 直積位相定義が2個の直積の場合に合致してるか?

    直積位相の定義についての質問です。 [定義ア]位相空間(X_λ,T_λ) (λ∈Λ(Λは任意の添数集合))と射影fが与えられていて,直積集合P:=ΠX_λとおく。 この時,X_λ⊃{f_λ^-1(t_λ)∈2^P;t_λ∈T_λ}=:S_λをf_λによって誘導される(X_λ,T_λ)の位相と呼ぶ。 次に和集合B:=∪S_λと置き, この時,このBから生成される位相{U∈2^P;∀x∈U,∃b∈B such that x∈b⊂U} を直積集合Pの直積位相と呼ぶ。 が直積位相の定義だと思います。 [定義イ]2個の直積(X_1,T_1)×(X_2,T_2)の場合の直積位相は{∪[g∈G]g ;G⊂T_1×T_2}と載ってました。 [定義ウ]集合Xの部分集合族Bが以下の条件を満たすときBをXの開基という (1)BはXを被覆する (2)任意のb1,b2∈Bおよび任意のx∈b1∩b2に対して、あるb∈Bが存在して、x∈b⊂b1∩b2となる。 [定義エ] Bを集合Xの開基とする時,{U∈2^X;∀x∈U,∃b∈B such that x∈b⊂U}をBによって生成される位相という。 そこで定義アの直積位相定義が2個の直積の場合に定義イと合致してるか調べています。 まずS_1={f_1^-1(t_1);t_1∈T_1},S_2={f_2^-1(t_2);t_2∈T_2}でB:=S_1∪S_2と置く。 そしてこのBによって生成される位相は{U∈2^(X_1×X_2);∀x∈U,∃b∈B such that x∈b⊂U}:=L これが{∪[g∈G]g;G⊂T_1×T_2}:=Mに一致してるか吟味してみます。 (i) L⊂Mを示す。 ∀U∈Lを採ると,∀x∈Uに対してx∈b⊂Uなるb∈Bが存在する。 Bの定義よりb={f_1^-1(t_1),f_2^-1(t_2)}という集合になっています。 そこで結局の所,Uは常にbを含んでいなければならない訳ですからU=∪[b∈B']b (但しB'⊂B)…(1)となっていますよね。 所でBの元達はというとB:=S_1∪S_2な訳ですから(1)は U={(t_1×x_2)∪(x_1×t_2);x_1⊂X_1,x_2⊂X_2}という形になってますよね。 ここでx_1やx_2は必ずしもT_1やT_2の元とは限らないわけですよね。 なのでこのUは∪[g∈G]g;G⊂T_1×T_2には含まれませんよね。 どうすればLとMが合致しますでしょうか? それとも直積位相は2個の直積集合の場合と3個以上の直積集合の場合とでのそれぞれ直積位相の概念は異なるのでしょうか?

  • 直積集合について質問です

    直積集合について質問です。 直積集合を定義することによってどのような利点が生まれるのですか? また集合Aと集合Bの直積集合において、集合Aの部分集合fを要素と考えて集合Bの要素と部分集合fを組にすることは可能ですか?

  • 直積の証明問題です。大学の数学のわかる方お願いします

    直積の証明問題です。大学の数学です。 Xの部分集合{A;λ∈∧} {B:μ∈M}について (∩{A:λ∈∧}×(∩{B:μ∈M})=∩{A×B:<λ、μ>∈∧×M} を証明せよ という問題が解けずこまっています。よろしくお願いします 要素が含まれることを書けばいいと思うのですが、どう書けばいいのか わかりません。

  • 位相空間・直積空間

    はじめまして。 数学科の学生です。 位相空間のテストを間近に控え勉強しています。 「集合と位相」 鎌田正良著 P107[3-4] A1を位相空間X1の部分空間とし、A2を位相空間X2の部分空間とすると、直積空間A1×A2は直積空間X1×X2の部分空間を示せ。 この問題が分かりません。 相対位相と直積空間を使うというのは分かるのですが、 直積空間の定義自体がしっくりきません。 どなたかお力をお貸しください。

  • 何が箱位相と直積位相でのR^ωのR^∞の閉包か?

    R^∞はR^ω(R^ωはRの可算個の直積集合)の部分集合でやがて0になる数列{x_n}(有限個の項は非零)全体からなる集合とする時,何が箱位相と直積位相でのR^ωのR^∞の閉包か? 正解はR^∞ の箱位相と直積位相における閉包を夫々A,Bとすると A=R^∞,B=R^ωのようです。 R^ωの直積位相T_pはTをRの通常の位相とすると S:=∪[λ∈Λ]{π_λ^-1(U_λ);U_λ∈T} (Λは可算な添数集合,π_λは射影) とするとこのSはR^ω上の準開基をなし, B:={∩[s∈S']s;S'⊂S,S'は有限集合}はR^ω上の開基をなし、 これから生成される位相T_pは T_p:={∪B';B'⊂B}(={∪[b∈B']b;B'⊂B}の意味)と書ける。 箱位相T_bの定義は B:={Π[λ∈Λ]U_λ;U_λ∈T}と置くとT_b:={∪[b∈B']b;B'⊂B} それでT_p⊂T_bの関係になっていると思います。 ヒントは ∀x=(x_1,x_2,…)∈(R^∞)^cを取り, ε_i=|x_i|/2 (x_i≠0の時),∞(x_i=0の時) とすると V=(-ε_1,ε1)×(-ε_2,ε_2)×… はxの箱位相における近傍でR^∞∩V=φ よってA=R^∞. となっています。∀x=(x_1,x_2,…)が(R^∞)^cの内点になっているのでA=R^∞という事なんでしょうが (0,0,…)はR^∞の元になっていてVの元にもなっていますよね。 したがってR^∞∩V=φは言えないと思うのですが…。 後半についてのヒントは ∀x=(x_1,x_2,…)∈R^ωを取ると直積位相におけるxの任意の近傍Vを取ると ある自然数nに対し,{x_1}×{x_2}×…×{x_n}×R^ω⊂Vで R^∞∩{x_1}×{x_2}×…×{x_n}×R^ω≠φなのでR^∞∩V≠φである。 よってB=R^ω となっているのですがこれも同様に∀x=(x_1,x_2,…)∈R^ωがR^∞の内点かもしくは境界点になっているのでB=R^ωとなるんだと思います。 xの任意の近傍Vはx∈V∈T_pと書けますよね。 それが{x_1}×{x_2}×…×{x_n}×R^ω⊂Vとどうしてなるのか分かりません もしV=(-|x_1|-1,|x_1|+1)×(-|x_2|-1,|x_2|+1)×(-|x_3|-1,|x_3|+1)×… とずっとなっている場合は,{x_1}×{x_2}×…×{x_n}×R^ω⊂Vと言えませんよね。 どのように解釈したらいいのでしょうか?

  • 直積集合の空集合と全集合

    σ集合体Ψ、Ωを使って、(*)のように直積をとった集合族の空集合と 全集合は何になるんでしょうか?ちなみに、Ψは集合Y、Ωは集合Zを もとに作られているとします。 {A×B; A∈Ψ, B∈Ω} (*) 空集合を0で表記すると、(*)の空集合は0×0、全集合はY×Zと思った のですが、正しいでしょうか。また、0×BやA×0はどう扱うのでしょうか。 Y×BとA×Zは全集合ではないというのはなんとなくわかるのですが…。 よろしくお願いします。