• ベストアンサー
  • 困ってます

集合論 直積集合の定義式

直積集合の定義を,冪(ベキ)集合を用いているものがあります. 直積集合自体の意味は,たとえば,X×Yで,デカルト平面を想像すればわかります. その定義式は, 集合X,Yについて { (x,y)∈ B(B(U{x,y})):x∈X,y∈Y } ただし,B(・)は,冪集合を表す記号. また,U{・}は,和集合を作る記号で,A U B U C U・・と同じです. 冪集合でまた冪集合を作るような記号らへんのところも特に分かりづらいです.

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

何が質問事項なのかよくわからないのですが, 順序対の方にも書いたのでついでに. あと { (x,y)∈ B(B(U{x,y})):x∈X,y∈Y } はおかしいと思う 書くなら,下のような感じかな. 直積は順序対の集合です. これを前提にすれば, ベキ集合で表せるのは明らかです. P(X) で X のベキ集合(Power set)を表すことにします ・{x} は P(X) の元 ・{x,y} は P(X∪Y) の元 ・P(X) は P(X∪Y) の部分集合 です. つまり,{x} と {x,y} は P(X∪Y) の元です. そこで,{x} と {x,y} の順序対(x,y) = { {x}, {x,y} }を考えると これは P(P(X∪Y)),P(X∪Y)のベキ集合,の元です. つまり, (x,y) ∈ P(P(X∪Y)) これを X,Y の元全部にわたって動かすことで定義される集合が 直積 X x Y です. まじめにやるなら置換公理(もしくは分出公理)とかで きっちり考える必要がありますし 上で「集合です」と言い切った部分も検証が必要です. そもそも直積の定義はこういう書き下したものではなくって 性質で定義して,それを満たすものの存在を示すという方が 個人的には分かりやすいと思います. #圏論とかの「普遍性」の議論にも通じるものがありますしね

共感・感謝の気持ちを伝えよう!

質問者からのお礼

別の質問にも答えていただいているようでほんとにありがとうございました. P(P(・))が特に知りたかったのでよく分かり納得しました.

関連するQ&A

  • 「直積集合の全集合」とは?

    別の方の質問 http://oshiete1.goo.ne.jp/qa4877672.html を見ていて気になった点についてです。 「集合族の空集合と全集合」とは何でしょうか? 通常、「空集合」や「全集合」は、何らかの集合の ベキ集合族に対して定義される概念かと思います。 一般の集合族に対する「全集合」とは、どのように 定義されるのでしょう? 「集合族Φの全集合」と言ったら、Φ自身のことでしょうか、 それとも、Φの最大元のことでしょうか? ご存知の方、解説よろしくお願いします。 先の http://oshiete1.goo.ne.jp/qa4877672.html の例で言えば、 ΨとΩの集合族としての直積は、質問氏の書いている Ψ×Ω = { (A,B) ; A∈Ψ, B∈Ω } ですが、これは、 ベキ集合族ではないし、σ集合族でもありません。 Y と Z の空間としての直積に付随するσ集合族 という意味で 言っているのだとすれば、「直積」は、このΨ×Ωではなく、 Ψ×Ωの任意個の元の和集合全体が成す集合族 になるハズです。 その際、「全集合」が Y×Z であることは違いありませんが… また、A×0 = 0×B = 0 と考えるなら、この式の「×」を 0 と B の集合としての直積と解釈したことになります。 Ψ×Ω = { A×B ; A∈Ψ, B∈Ω } と表記するのならば、 右辺内の A×B は、A と B の対 (A,B) という意図で 標準的でない書き方をしてしまったものと解釈すべきで、 A と B の集合としての直積ではありえません。 その場合、0×B は、Ψ×Ωの元で Y成分が 0、Z成分が B の ものであって、空集合ではありません。

  • 直積位相定義が2個の直積の場合に合致してるか?

    直積位相の定義についての質問です。 [定義ア]位相空間(X_λ,T_λ) (λ∈Λ(Λは任意の添数集合))と射影fが与えられていて,直積集合P:=ΠX_λとおく。 この時,X_λ⊃{f_λ^-1(t_λ)∈2^P;t_λ∈T_λ}=:S_λをf_λによって誘導される(X_λ,T_λ)の位相と呼ぶ。 次に和集合B:=∪S_λと置き, この時,このBから生成される位相{U∈2^P;∀x∈U,∃b∈B such that x∈b⊂U} を直積集合Pの直積位相と呼ぶ。 が直積位相の定義だと思います。 [定義イ]2個の直積(X_1,T_1)×(X_2,T_2)の場合の直積位相は{∪[g∈G]g ;G⊂T_1×T_2}と載ってました。 [定義ウ]集合Xの部分集合族Bが以下の条件を満たすときBをXの開基という (1)BはXを被覆する (2)任意のb1,b2∈Bおよび任意のx∈b1∩b2に対して、あるb∈Bが存在して、x∈b⊂b1∩b2となる。 [定義エ] Bを集合Xの開基とする時,{U∈2^X;∀x∈U,∃b∈B such that x∈b⊂U}をBによって生成される位相という。 そこで定義アの直積位相定義が2個の直積の場合に定義イと合致してるか調べています。 まずS_1={f_1^-1(t_1);t_1∈T_1},S_2={f_2^-1(t_2);t_2∈T_2}でB:=S_1∪S_2と置く。 そしてこのBによって生成される位相は{U∈2^(X_1×X_2);∀x∈U,∃b∈B such that x∈b⊂U}:=L これが{∪[g∈G]g;G⊂T_1×T_2}:=Mに一致してるか吟味してみます。 (i) L⊂Mを示す。 ∀U∈Lを採ると,∀x∈Uに対してx∈b⊂Uなるb∈Bが存在する。 Bの定義よりb={f_1^-1(t_1),f_2^-1(t_2)}という集合になっています。 そこで結局の所,Uは常にbを含んでいなければならない訳ですからU=∪[b∈B']b (但しB'⊂B)…(1)となっていますよね。 所でBの元達はというとB:=S_1∪S_2な訳ですから(1)は U={(t_1×x_2)∪(x_1×t_2);x_1⊂X_1,x_2⊂X_2}という形になってますよね。 ここでx_1やx_2は必ずしもT_1やT_2の元とは限らないわけですよね。 なのでこのUは∪[g∈G]g;G⊂T_1×T_2には含まれませんよね。 どうすればLとMが合致しますでしょうか? それとも直積位相は2個の直積集合の場合と3個以上の直積集合の場合とでのそれぞれ直積位相の概念は異なるのでしょうか?

  • 直積集合の作り方について

    こんにちは。 物理学を学んでいる学生ですが数学を独学で勉強中で直積集合の構成について質問があります。 目的は直積集合で座標軸xを構成することとします。 このとき、 ある添数集合N(自然数)を定義し、その元をλとします。(λ=1,2,3,・・・) この時、Nによって添数づけられた集合族 (A)λ∈N を定義しておいて、 この集合族Aを(-λ, λ)としておく。 全ての添数λ(∈N)についての集合族Aの和集合で直積集合を構成することにする。 このとき、Aの和集合で構成される直積集合は(-∞,∞)の集合となりますか? この考え方で座標軸x軸を構成できると思いました。 この考え方は正しいですか? また、間違っているならどこが間違っているか教えてください。 お願いします

  • 直積集合について質問です

    直積集合について質問です。 直積集合を定義することによってどのような利点が生まれるのですか? また集合Aと集合Bの直積集合において、集合Aの部分集合fを要素と考えて集合Bの要素と部分集合fを組にすることは可能ですか?

  • 直積集合の元は必ず集合となる?

    度々すいません。また数学基礎論での質問です。 a,bを集合として<a,b>:={{a},{a,b}}と定義し、順序対と呼ぶ。 そして、 A×B:={<a,b>;(a∈A)∧(b∈B)}と定義し、A×Bを直積集合と呼ぶ。 と記載されているのですが、 これだとAやBは集合系(集合が元であるような集合)でa,bは集合ですよね。 (A×Bの元<a,b>は2^(2^(A∪B))の元?) でも 通常、数学基礎論以外の教科書(微分積分や線形代数)ではA×Bの元は集合でない場合で定義されてますよね。 A×B:={<a,b>;(a∈A)∧(b∈B)}が直積集合の定義で微分積分や線形代数での直積集合の定義も含んでいるのなら、 元は集合にも成りうるのでしょうか? 具体的には a,bを集合として<a,b>:={{a},{a,b}}と定義し、A×B:={<a,b>;(a∈A)∧(b∈B)}と定義するのなら実数体の直積集合R×Rの元(例えば(√2,1/2))は集合と言ってもいいのでしょうか?

  • 集合論の直積

    集合論の直積でつまずいています.和集合などはベン図に描いて理解しやすいのですが,直積に関してはイメージも沸かず,困っています. 以下は,○か×かどちらになるかの理由を考えていますが,解らない状態です.どなたか集合論にお強い方,お知恵を拝借させてください. 1.(Π_[i∈N]Ai)^c=Π_[i∈N](Ai)^c 2.A*(∪_[i∈N]Bi)=∪_[i∈N](A*Bi) 3.A^c*B^c*C^c⊂(A*B*C)^c 4.任意のi∈NについてAi⊂Biであれば,Π_[i∈N]Ai⊂Π_[i∈N]Bi 5.Π_[i∈N]Ai=φ⇒∀i∈N,Ai=φ

  • 情報数学 直積と関係

    大学でコンピュータの基礎となる情報数学を学んでいる者です 教授はただプリントに書いてある定義を述べるだけで、結局どういうものなのか、またどういう捉え方をしておけばよいのかを教えてくれません。 「直積とはA,Bを集合とするとき、C=A×B={(x,y)x∈A、y∈B}」 としか書いてありません。直積とはどういう概念なんでしょうか? 「直積の部分集合Rを関係Rという。」「(a,b)∈RをaRbと書く。」 なども記号の使い方(a,b)∈Rがよく分りません。 どういった形でこれらのことを頭に入れておけば良いのか、是非回答をお願いします。 もしできればこういった事を分かりやすく説明してくれる教科書、参考書等があれば教えていただけるとうれしいです<m(__)m>

  • 直積集合の空集合と全集合

    σ集合体Ψ、Ωを使って、(*)のように直積をとった集合族の空集合と 全集合は何になるんでしょうか?ちなみに、Ψは集合Y、Ωは集合Zを もとに作られているとします。 {A×B; A∈Ψ, B∈Ω} (*) 空集合を0で表記すると、(*)の空集合は0×0、全集合はY×Zと思った のですが、正しいでしょうか。また、0×BやA×0はどう扱うのでしょうか。 Y×BとA×Zは全集合ではないというのはなんとなくわかるのですが…。 よろしくお願いします。

  • 集合と位相

    (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

  • 閉円板の和集合として表すことができる図形はどのようなもの?

    ユークリッド平面のあらゆる開集合は、(一般には無限個の)開円板の和集合として表すことができます。 実際、U を開集合とすると、 U の各点 x に対して、 x を中心とする十分小さい半径ε(x)の開円板 B(x,ε(x)) は U に含まれるから、このような B(x,ε(x)) すべての和集合 ∪[x∈U]B(x,ε(x)) は U に等しい。 ここで、開円板の変わりに「閉」円板を考え、その和集合を考えると、どういった集合になるのか気になりました。 ちょっと考えれば、開円板は閉円板の無限個の和集合で表すことができるので、 ユークリッド平面のあらゆる開集合は、(一般には無限個の)閉円板の和集合として表すことができる ことにもなります。 しかし、開円板も閉円板も半径は正と考えるので、 1点は閉円板の和集合として表すことができない ことになります。なので、 閉集合は閉円板の和集合として表すことができるときもできないときもある ことになります。 たとえば、三角形の内部と周を含む領域は、閉円板の和集合として表すことができなさそうです。 三角形の内部と周を含む領域から3つの頂点をのぞいた図形は、閉円板の和集合として表すことができそうです。 位相幾何学では、図形の性質を言い換える、ことが多いと思うのですが、「閉円板の和集合として表すことができる」という性質をなにか別の言葉で言い換えたいと考えています。 一般に、閉円板の和集合として表すことができる図形はどのようなものなのでしょうか?