• ベストアンサー
  • 困ってます

空間ベクトル

「点P(3,2,3)から、3点A(2,0,-5),B(-4,3,4),C(0,-2,1) を通る平面に下ろした垂線の足Hの座標を求めよ。」という問題で、 通常は、法線ベクトルn=(a,b,c)として、ABベクトルとACベクトルの直交条件から 求めると思いますが、簡明な下記解答がありました。 OA+2OB-3OC=-6(1,-2,0) 2OA+OB-3OC=9(0,1,-1) 平面ABCの法線ベクトルn=(2,1,1)/√6 OH=OP+(PA.n)n=(3,2,3)-2(2,1,1)=(-1,0,1) どのようにしてこの式が誘導できるのか、意味を教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数64
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • f272
  • ベストアンサー率45% (5148/11402)

OA+2OB-3OC=-6(1,-2,0) 2OA+OB-3OC=9(0,1,-1) は平面ABC内の2つのベクトルだが成分の1つが0になるようにしたのだと思う。私なら単純にAB=(-6,-3,9)=3(-2,-1,3)とAC=(-2,-2,6)=2(-1,-1,3)を考えると思う。これで外積を求めるのは少しだけ難しくなるが,その代わりに2つのベクトルの成分計算はかなり楽になる。 「平面ABCの法線ベクトルn=(2,1,1)/√6」は上記のベクトルの外積を計算して単位ベクトルにした。 「OH=OP+(PA.n)n=(3,2,3)-2(2,1,1)=(-1,0,1)」はOHをOPとPを通る法線方向のベクトル(長さはちょうど内積で求まる)に分けて計算した。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。

関連するQ&A

  • 数学の空間ベクトルです。教えてください

    空間で四面体OABCを考え ベクトルOA=a OB=b OC= cとおく。 (1)Pを3点A,B,Cを通る平面状の点とする。このときOPはs+t+u=1 を満たす次数s,t,uを用いて OP=sa+tb+ucと表されることを示せ。 (2)以上6辺OA,OB,OC,AB,BC,CAの長さをそれぞれ√10,4,2,6,2√7,4とする。内積a・b b・c c・aの値を求めよ (3)3点A,B,Cを通る平面に点O殻下ろした垂線の足をHとする。 ベクトルOH=xa+yb+zcを満たす実数x,y,zを求めよ

  • 空間ベクトル

    空間ベクトルの問題で、以下がその問題文です。 空間に3点A(a,0,0),B(0,b,0),C(0,0,c)がある。ただし、a>0,b>0,c>0とする。次の問に答えよ。 (1)原点から平面ABCへ下ろした垂線の足をHとするとき、OHをOA,OB,OCを用いて表せ。 (2)|OH|を求めよ。 (OH,OA,OB,OC,|OH|はそれぞれベクトルです。以後、自分の解答指針も同様とします。) (1)では、 AH=sAB+tAC (s,tは実数とする) OH=(1-s-t)OA+sOB+tOC とか、 OH⊥平面ABCより,OH・AB=0,OH・AC=0 とかやってみたのですが、成分表示やらベクトル表示やらでこんがらがってしまいました。 (2)では、実はこの2問の前に、OHと平行なベクトルn=(bc,ca,ab)が求まっていて、OH=kn (kは実数)を使うらしいのですが、(1)が求まらない以上、手が出せません。 どなたかわかる方、宜しくお願いします。

  • 空間ベクトルの問題がわかりません

    「1辺の長さが1の正四面体OABCがある。 辺OBの中点をM,辺OCを1:2に内分する点をNとし、点Oから平面AMNへ垂線を引き、平面AMNと垂線の交点をH、直線OHと平面ABCとの交点をKとする。 OAをaベクトル、OBをbベクトル、OCをcベクトルとして、OHベクトル、OKベクトルをそれぞれaベクトル、bベクトル、cベクトルを用いて表せ。」 という問題で、 OHベクトルは-1/3aベクトル+1/3bベクトル+cベクトルと計算してみましたが、 OKベクトルで「平面ABCとの交点をkとする」 条件を見つけられません。 どう立式したら良いのでしょうか? またOHベクトルも正しいがどうかわかりません。 よろしくお願いします。

  • 高2のベクトルです

    空間で四面体OABCを考え ベクトルOA=a OB=b OC= cとおく。 (1)Pを3点A,B,Cを通る平面状の点とする。このときOPはs+t+u=1 を満たす次数s,t,uを用いて OP=sa+tb+ucと表されることを示せ。 (2)以上6辺OA,OB,OC,AB,BC,CAの長さをそれぞれ√10,4,2,6,2√7,4とする。内積a・b b・c c・aの値を求めよ (3)3点A,B,Cを通る平面に点Oに下ろした垂線の足をHとする。 ベクトルOH=xa+yb+zcを満たす実数x,y,zを求めよ この問題の(3)なんですが ・Hは平面ABC上の点 (1) ・→OH⊥→AB、→OH⊥AC(2) 以上の条件を使うらしいのですが(2)は以下のとおりでいいのですか? →OH⊥→ABは6ax+6by+6cz=0 →OH⊥ACは4ax+4by+4cz=0 (1)はどうやって表したらいいのですか? 教えてください。 あとできたらのでいいので(1)のほうも教えていただけませんでしょうか?

  • 空間ベクトル

    四面体OABCにおいて、∠AOB=∠AOC=60°、∠BOC=90°、OA=1とする。 頂点Oから平面ABCに下ろした垂線が、△ABCの重心Gを通るとき、辺OB,OCの長さを求めよ。 という問題です。 V(OG)=1/3{V(OA)+V(OB)+V(OC)} 点Gは平面ABC上の点より V(AG)=sV(AB)+tV(AC)とおける 整理して V(OG)=(1-s-t)V(OA)+sV(OB)+tV(OC) V(OA),V(OB),V(OC)}は1次独立より、係数比較から s=1/3,t=1/3 ∴V(AG)=1/3{V(AB)+V(AC)} としましたが、辺OB,OCの長さには行き着きそうもありません。 どなたか教えて下さい。

  • 空間ベクトルの問題

    「3点A(0,1,2),B(1,2,1),C(4,-1,2)を通る平面をαとする。 原点Oから平面αに垂線OHを引くとき、点Hの座標を求めよ。」 という問題なのですが、答えは(4/7,8/7,12/7)であり、ベクトルOH⊥ベクトルAB,ベクトルOH⊥ベクトルACで、内積を使って求めるのは分かるのですが、解答までの過程がよく分かりません。回答お願いします。

  • 数学の問題なんですが

    空間内に3点A(-1,3,4),B(-2,3,5), C(0,5,2)がある A,B,Cを通る平面に原点Oから 下ろした垂線をOPとすると ベクトルOP=lベクトルOA+mベクトルOB+nベクトルOC となる l,m,n,を求めるという問題なんですがどのように求 めたらいいんでしょうか? 計算過程を含めて教えてください。

  • 空間ベクトルがわかりません

    原点Oとする座標空間において、xy平面上の点A、Bおよびz軸上の点Cがある。ただし、4点O、A、B、Cはすべて異なる点とする。線分OAを2:1に内分する点をP、線分CPを1:3に内分する点をQとする。 また、OAベクトル=aベクトル OBベクトル=bベクトル OCベクトル=cベクトルとする。 (1) △ABCの重心をGとするとき、直線QGのベクトルを方程式をaベクトル、bベクトル、cベクトルを用いて表してください。 (2) 直線QGがxy平面と交わる点の位置ベクトルをaベクトルとbベクトルを用いてあらわしてください。 わかるかた教えてください。お願いします。

  • 空間ベクトルの証明問題です。

    「四角形ABCDを底面とする四角すいOABCDは、ベクトルOA+ベクトルOC=ベクトルOB+ベクトルODを満たしており、0と異なる4つの実数p、q、r、sに対して4点P、Q、R、SをベクトルOP=pベクトルOA、ベクトルOQ=qベクトルOB、ベクトルOR=rベクトルOC、ベクトルOS=sベクトルODによって定める。 このとき、P、Q、R、Sが同一平面上にあれば 1/p + 1/r = 1/q + 1/sが成り立つことを示せ。」 という問題です。ここまで解答したのですが、まだ欠けているような気がするので…ご指摘お願いします。 (ベクトルを省略させていただきます) 題意より、OA-OB=OD-OC よってBA=CD また、OA-OD=OB-OC よってDA=CB したがって、四角形ABCDは平行四辺形 P、Q、R、Sは同一平面上にあるので、四角形ABCD∽四角形PQRS よって、OA+OC=OB+ODより、 1/pOP+1/rOR=1/qOQ=1/sOS したがって、1/p+1/r=1/q+1/s

  • 成分表示について

    xy平面上に、3点O(0,0),A(5,0),B(2,3)がある。 Aから直線OBに下ろした垂線とBから直線OAに下ろした垂線との交点をPとするとき、点Pの座標と∠AOPを求めよ。また、→OPを、→OA,→OBを使って表せ。 点Pの座標を求めるのにグラフを描いてみたのですが、もっと簡単に求められる方法はありますか? ベクトルが苦手なので、解き方のヒントだけでも教えていただきたいです。お願いします。