• ベストアンサー
  • すぐに回答を!

ベクトル

四面体OABCの内部に点Pがあり2OP+3AP+4BP+5CP=0を満たしている。OA=a、OB=b、OC=cとする。 (3)点Oから△ABCを含む平面に垂線OHを下ろす。 |a|=|b|=|c|=2、a・b=b・c=c・a=1のときOHをa、b、cで表せ。また四面体OABCの体積を求めよ。 式から詳しく教えて下さい。お願いします。 ※等式のなどは→(ベクトル)がつきます。 答えは→  →  →   →    OH=1/3a+1/3b+1/3c   体積√6/2       です。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数238
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#24477
noname#24477

(3)は上の条件を使わないで計算できます。 条件から△OABは2等辺三角形。 △OBC,△OCAも同様に同じ三角形になる。 ということは△ABCは正三角形。 Hは正三角形の中心(重心)になる。 辺の長さは内積で計算できる。 |OH|^2=OH・OH |AB|=|OB-OA| 2乗して内積 正三角形の面積が計算できる。 体積=(1/3)OH*△ABC

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。おかげで解けました。 この問題は中間テストのやり直しで、困ってました。 本当にありがとうございました。

関連するQ&A

  • ベクトルの問題です

    ベクトルの問題です 四面体ABCDの内部に点Oをとり、α、β、γ、δをそれぞれ四面体OBCD、OCDA、ODAB、OABCの体積とするとき、次の等式を証明せよ。 αOA+βOB+γOC+δOD=0  (OA、OB、OC、OD、0はベクトル) この問題がわかりません!! 解き方を教えてください できれば外積を使って解いてください よろしくおねがいします!!

  • 高2のベクトルです

    空間で四面体OABCを考え ベクトルOA=a OB=b OC= cとおく。 (1)Pを3点A,B,Cを通る平面状の点とする。このときOPはs+t+u=1 を満たす次数s,t,uを用いて OP=sa+tb+ucと表されることを示せ。 (2)以上6辺OA,OB,OC,AB,BC,CAの長さをそれぞれ√10,4,2,6,2√7,4とする。内積a・b b・c c・aの値を求めよ (3)3点A,B,Cを通る平面に点Oに下ろした垂線の足をHとする。 ベクトルOH=xa+yb+zcを満たす実数x,y,zを求めよ この問題の(3)なんですが ・Hは平面ABC上の点 (1) ・→OH⊥→AB、→OH⊥AC(2) 以上の条件を使うらしいのですが(2)は以下のとおりでいいのですか? →OH⊥→ABは6ax+6by+6cz=0 →OH⊥ACは4ax+4by+4cz=0 (1)はどうやって表したらいいのですか? 教えてください。 あとできたらのでいいので(1)のほうも教えていただけませんでしょうか?

  • 四面体 垂線の足

    四面体OABCは、OA=4、OB=5、OC=3、∠AOB=90°、∠AOC=∠BOC= 60°を満たす。 (1)点CAから△OABに下ろした垂線と△OABとの交点をHとする。ベクトル →CHを→OA、→OB、→OCを用いて表せ。 (2)四面体OABCの体積を求めよ。

  • 数学B ベクトルがどうしても分かりません

    内積と空間図形の問題が面積のところまでしか分かりません!! どなたか解説をお願いします!! 問い) 四面体OABCにおいて、OA=3、OB=4、OC=5、∠AOB=∠AOC=∠BOC=60°である。 三角形OBCの面積は(あ)√(い)、である。 OAベクトル=aベクトル、OBベクトル=bベクトル、OCベクトル=cベクトルとおく。 頂点Aから三角形OBCを含む平面に垂線AHを引く。 AHベクトル⊥bベクトル、AHベクトル⊥cベクトルであるから、 OHベクトル=(え分のう)bベクトル+(か分のお)cベクトルと表される。 よって、AHベクトルの大きさ=√(き)であるから、四面体OABCの体積は(く)√(け)である。

  • ベクトル

    四面体OABCにおいて OA=3、OB=2√3、OC=2 OA↑・OB↑=9、OB↑・OC↑=0 OC↑・OA↑=2 とする。 (1)BOC=90゜ 次にcos∠AOB=9/3・2√3 =√3/2、∴∠AOB=30゜ △OABの面積は 1/2・OA・OB・sin∠AOB =1/2・3・2√3・sin30゜ =(3√3)/2 (2)OABを含む平面上に点Pをとり、実数s、tを用いてOP↑=sOA↑・tOB↑と表す。 (i)CP↑=OP↑-OC↑ CP↑・OA↑=クs+ケt-コ CP↑・OB↑=サs+シスtとなる。 そもそもOABを含む平面上に点Pをとりとはどういうことですか。 しょーもない質問で申し訳ないです。 回答下さるとうれしいです。

  • ベクトルの問題で分らないのがあるので教えてください

    ※a→は「aベクトル」という意味です。 四面体OABCがあり、頂点Aから平面OBCに下ろした垂線と平面OBCとの交点をHとします。 OA→=a→、OB→=b→、OC→=c→とおきます。|a→|=|b→|=2、|c→|=1、a→・b→=c→・a→=1/2、∠BOC=60°のとき、 (1)△BOCの面積を求めてください。(途中式もお願いします。) (2)AH→をa→、b→、c→を用いて表してください。(途中式もお願いします。) (3)四面体OABCの体積を求めてください。(途中式もお願いします。) ちなみに答えは、 (1)√3/2 (2)AH→=-a→+(c→/2) (3)√5/4

  • 大学入試過去問(ベクトル)

    四面体OABCは、OA=4、OB=5、OC=3、∠AOB=90°、∠AOC=∠BOC=60°を満たしている。 (1)点Cから△OABに下ろした垂線と△OABとの交点をHとする。CH↑をOA↑、OB↑ 、OC↑を用いて表せ。 (2)四面体OABCの体積を求めよ。 大学入試の過去問ですが、解答がなく、答え合わせできなくて困っています。明日までに答え合わせして塾に提出しないといけないので早めにお願いします!

  • 数学の空間ベクトルです。教えてください

    空間で四面体OABCを考え ベクトルOA=a OB=b OC= cとおく。 (1)Pを3点A,B,Cを通る平面状の点とする。このときOPはs+t+u=1 を満たす次数s,t,uを用いて OP=sa+tb+ucと表されることを示せ。 (2)以上6辺OA,OB,OC,AB,BC,CAの長さをそれぞれ√10,4,2,6,2√7,4とする。内積a・b b・c c・aの値を求めよ (3)3点A,B,Cを通る平面に点O殻下ろした垂線の足をHとする。 ベクトルOH=xa+yb+zcを満たす実数x,y,zを求めよ

  • ベクトル

    OA=OB=OC=4,角AOB=60°,角BOC=角COA=45°を満たす四面体OABCがあり、 ↑OA=↑a,↑OB=↑b,↑OC=↑cとおく。このとき、 内積↑a・↑=8 内積↑b・↑c=↑c・↑a=8√2 である。 辺OA上に点Pをとり、↑OP=x↑a(0<x<1)とし、辺OB上に点Qをとり、↑OQ=y↑b(0<y<1)とする。また、辺OCの中点をMとする。 (1)三角形MPQの重心をGとすると、 ↑OG=x/3↑a+y/3↑b+1/6↑c である。したがって、線分OGを3:1に外分する点をRとすると、 ↑ OR=x/2↑a+y/2↑b+1/4↑c となる。 (2)辺OBと線分MPが垂直の時 x=(√2)/2 であり、さらに、(1)における点Rが三角形ABCを含む平面上にあるとき y=(3-√2)/2 である。このとき四面体OPQMの体積は四面体OABCの体積の (ソ(√タ)-チ)/ツ倍 である。 この問いのソ~ツまでを教えてください。 ほかは自分で考えたので、間違っているかもしれません…

  • 数学 空間ベクトルについて

    数学 空間ベクトルの問題について 四面体OABCは OA=4 OB=5 OC=3 ∠AOB=90度、∠AOC=∠BOC=60度を満たしている。 (1)点Cから三角形OABに下ろした垂線と、三角形OABとの交点をHとする。 ベクトルCHをベクトルOA、ベクトルOB、ベクトルOCを用いてあらわせ。 (2)四面体OABCの体積を求めよ。 この二問なのですが解き方と解答がわからず困ってます。 なので途中式と解答をお願いします。