• ベストアンサー
  • 困ってます

数学科でのベクトル解析の必要性

大学で数学を勉強しています。数理情報科学科3年生です。 4年生と院では解析を勉強しようと思っています。 入学してから、微分積分、複素解析、そして今ルベーグ積分と微分方程式を勉強しています。 で、本屋さんに行くと、ベクトル解析というコーナーが数学の所にあって、ストークスの定理とかもあるので多変数の微分積分かな、とも思いつつ、微分方程式でもないみたいで、何につかうんでしょうか? 勉強しないよりする方がいいとは思うけど、将来必要になるとしたらどういう場合があるんでしょうか?

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4

 #3さんも仰ってますが、電気・磁気・流体力学・固体力学などで伝統的にベクトル解析の形式が使われてきた(かれこれ200年くらい?)、というのは大きいと思います。また多変数の微積分というのは、間違いなくそうだと思います。  例えば全微分はgrad(∇)で書けるし、ヤコビ行列も無理すれば∇で書けます。ただベクトル解析には、代数的側面と解析的側面がごっちゃになってるところはありますよね。その一つが、3次元でしか通用しない2階の反対称テンソル(反対称行列)の省略記法である外積、∇×です。  個人的にはアインシュタイン規約を用いたテンソル記法になれてしまえば、ベクトル解析より効率的かな?、と思うんですが、ベクトル解析にはここ200年の間に蓄積された物理的イメージを背負っているという強みはあります。なんかテンソル解析でわからなくなると、ベクトル解析の記号の組み合わせで書いてみるなんて事はありますね(^^;)。  もう一つは、大学の初等線形代数では、テンソルを使用しない事が一種の作法みたいになってて、テンソルを数学科以外では積極的に教えないからだと思います。だからベクトル解析になる訳ですが、60年以上も前に「外積代数」を著したフランダースは、「今から10年後には、テンソル解析とテンソル代数は工学の常識となっているであろう」と言いましたが、残念ながら21世紀になっても、そうはなってないようです(^^;)。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 ベクトル解析というのよりもテンソル解析というのを勉強したほうがいい、ということでしょうか? もう少し教えて頂けると幸いです。

その他の回答 (3)

  • 回答No.3
  • kon555
  • ベストアンサー率51% (1285/2472)

電気・磁気・流体力学・その他もろもろ工業系では必須ですね。幅広い分野に関わる部分です。 今は様々なソフトがあり、必ずしも理解していないとそうした分野に関われないという事はないです。ただ多くの学問がそうであるように、「概念を理解している」と見えてくる物がグンと増えます。 https://www.beret.co.jp/books/tachiyomi/images/669.pdf#search=%27%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E8%A7%A3%E6%9E%90%E3%81%A8%E3%81%AF%27

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうござます。 リンクの紹介ありがとうございました。勉強します。

  • 回答No.2
  • TIGANS
  • ベストアンサー率35% (238/662)

簡単に言えば多次元空間での解析に使う微分方程式みたいなもんです。 時系列で変化するようなデータを分析するような分野では必須でしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。

  • 回答No.1
  • kaitara1
  • ベストアンサー率12% (1073/8524)

指導教員のかたがたに伺うのが最も合理的(数学的)だと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございました。

関連するQ&A

  • ベクトル解析っていったい

    理学部で数学を勉強しています。 将来、微分方程式、できればナビエストークス方程式の研究をしたいと考えています。 物理の知識はほとんどないので、まずは∇やdiv、rotの記号に慣れないと、と思ってベクトル解析の簡単な本で自習しています。 が、ベクトル解析って、結局多変数の微積分の3次元版、と理解したらいいんでしょうか?1年生の微分積分で習ったこと以上のことってないんやないかなあ、と。 認識謝りや、このあとどんな勉強したらいいかなど、教えて欲しいです。 よろしくお願いいたします。

  • 数学科でするグリーンの定理、ストークスの定理等

    数学科の初学年の解析で、多変数関数の積分のところでガウス、グリーン、ストークスの定理が出てきます。が、簡単に済ませているような気がします。 線積分は複素解析でも必要ですが、これらの定理は数学科の高学年、大学院とかで使うことはあるのでしょうか? 数学科でベクトル解析とかあまりしないので、何に使うのかなあ、と思います。

  • ヴェクトル解析の目的

    数学を大学で勉強しています。 ベクトル解析の目的は、 ・ガウスの定理 ・ストークスの定理 かな、と思うのですが、この二つがなかなか腑に落ちません。 一体何に使えるのだろう、と思うのですが、応用例も少なく、何に使えるのだろう、と不思議でなりません。 勉強のモチベーションとして、何のために勉強するのでしょうか?

  • 工学部の方のベクトル解析の使い方

    大学で数学を勉強しています。 ベクトル解析を独習しています。多変数の微積分の発展、と理解していますが、電磁気学や流体力学でよく使われるようです。 ストークスの定理やガウスの定理は、球など綺麗なものにしか適用できなくて、複雑な物体だとうまく計算できない気がします。 ベクトル解析って工学部ではどのように使われているんでしょうか。

  • 機械工学と数学

    機械工学で特に重要な数学は何ですか? 【微積分/線形代数/ベクトル解析/フーリエ級数/ラプラス変換/偏微分方程式/常微分方程式/複素解析】

  • 数学科で勉強する手順

    今年4月から数学科に入学する、数学教師を志す者です。 なんせ4月まで時間があるので、この間はやく身につけたいです。 この質問をするまでとりあえず命題論理や述語論理など、大学で学ぶ上で最低限必要な数学言語の本を読みました。 数学にはおおまかに3つに分けられていると言われていますが、実際勉強し始めるとなると、偏微分方程式、常微分方程式、統計学、複素関数、微分積分、線形数学、ベクトル解析などと、本屋に行くとさまざまな分野に分かれているとわかりました。 そこで質問なんですが、どのような順番でこれらを勉強すればよろしいのでしょうか。 例えば私は今IIICの知識しかないのですが、この予備知識から理解できるような手順を教えてください。 例えば (1)微分積分→(2)線形数学→(3)・・・・・ という感じでお願いします。 余裕がありましたらわかりやすいおすすめの本を教えてください。(私は理解力がある方ではありません)

  • ロボットの運動を解析するために必要な数学的知識

    ロボットアームなどのロボットの運動を解析するために必要な数学的知識は何か教えてください.下記が理解できていれば下地としては十分でしょうか? ・線形代数 ・解析学 ・微積分学 ・ベクトル解析 ・微分方程式

  • 統計解析の勉強で使うデータ

    大学3年で、数学を勉強しています。 今はルベーグ積分や微分方程式を勉強していますが、統計にも興味があります。 本屋さんで統計のコーナーを見ると、数学に近いけど、若干違うのかな、という配列人なっている感じがします。 統計学って、数学科よりも工学系の学科や経済学部で勉強した方がいいのでしょうか? そもそも、統計って、それを分類したり解析したりするもので、教科書にのっているものは、数値の個数が少なかったり、当たり前の子ことを調べるためのデータのような気がします。どういうデータを使って勉強したらいいのでしょうか。

  • 微分積分、線形台数、ベクトル解析学などについていけない。

    微分積分、線形台数、ベクトル解析学などについていけない。 現在高校3年生で、情報系への進学を考えています。 しかし私が2年のときは専門学校に行くつもりだったので数学III、Cはとっていなかったため 微分積分、線形台数、ベクトル解析学 などの授業がある場所に行くには厳しいかと考えて大学が決まらない状態です。 また、偏差値は英語48 数学35 国語47 と数学が苦手な結果が反映されています。 実際は偏差値40代後半あたりの大学を狙いたいのですが、このままでは40程度の偏差値の無名な大学に推薦で決めてしまいそうです。 現在、第一志望は少しでも名前がある大学を考え、 日本大学を志望しています。 しかし交通の便の問題で福島県にある工学部のキャンパスに行くのは厳しいです。 かといって 情報系で学びたい内容があるのは 数理情報工学科です。 数理情報工学科は名前の通り数学を軸としているので 単位などの問題が不安で頭が痛いです。 授業内容に書いてあったものは 線形空間論 形式論理 カオスと情報処理 システム解析 応用解析学 幾何学 確率統計解析 計算論 離散数学 計算高額 メディア数理 などがあり、数学に苦手意識を持っている人間が単位を取って卒業できるか不安です。 そこで、上記の授業内容は数学3cをとってないと難しいのか。 (厳しい内容でも構いませんので真実を教えてください。) 微分積分、線形台数、ベクトル解析学 ではどこまで数学III、Cの学力どの程度 微分積分、線形台数、ベクトル解析学 は数学III、Cがないとついていけないか。 微分積分は数学IIIの知識。 ベクトル解析学と線形台数は数学Cの知識だと思いますが詳しい部分も教えてください。 よろしくお願いします。

  • 古典物理学各分野に必要な数学について

    理工系大学1年の者です。古典物理学各分野に必要な数学が分からず困っています。物理学に必要でない数学はないそうなのですが、古典物理学入門のレベルで古典物理学各分野(力学・波動と光・熱力学・電磁気学)を学ぶ前に勉強した方が良い必要な数学とは何なんでしょうか?自分なりに物理数学の本の内容などを調べてみると、微分積分・線形代数学(ベクトルと行列)・ベクトル解析・常微分方程式・偏微分方程式・複素解析・フーリエ級数・フーリエ変換・ラプラス変換というものが必要だとまでは分かりました。ですが、それぞれどの分野で必要となる数学分野なのかが分かりません。(例えば力学にはあれが必要で、電磁気学にはあれが必要で・・・という感じで)。また微分方程式を学ぶ前に、微分積分と線形代数学の勉強が必要であるらしいなど、各数学分野で必要とされる他の数学の分野の予備知識や、それによって決まる数学を勉強する順序が分かりません。 ですので、私のように入門レベルでまず必要な数学、「力学は・・・、電磁気学は・・・を前もって勉強した方が良い」、また「予備知識、それに伴う数学の勉強の順序は・・→・・→・・」といった感じでアドバイスをお願いします。また私が何か勘違いをもししていたら、その指摘もお願いします。 よろしくお願いします。